

# ISSN- 2230-7346 Journal of Global Trends in Pharmaceutical Sciences



## NEXT GENERATION ANTIDIABETIC THERAPIES: RECENTLY APPROVED DRUGS AND PIPELINE INNOVATIONS

# Vemavarapu N.V. Uma Chandravathi, Kondumanhanti V.N. Lakshmi\*, Devaboyina Narendra

VJ's College Of Pharmacy, Diwancheruvu, Andhra Pradesh.

\*Corresponding author E-mail: nagalakshmikondumahanti@gmail.com

#### ARTICLE INFO

#### **ABSTRACT**

### **Key words:**

Novel drugs, Harmine, Artificial Pancreas system, Smart insulin pens.



Diabetic Mellitus, a chronic metabolic disorder, continuous to pose significant Health challenges globally. The management of diabetes mellitus has entered a transformative era with the advent of novel pharmacological agents and advanced drug delivery systems that aim to optimize glycemic control, reduce complications, and improve patient adherence. This article aims to provide a comprehensive review of the latest clinical trials, FDA approvals and ongoing research drugs on diabetes management and novel approaches like Artificial Pancreas System. The potential impact of immunomodulatory therapies and Beta cell regeneration strategies, including the management of Diabetes in pediatrics with recent technologies are also explored. Among the most promising therapies is tirzepatide, a dual GIP/GLP-1 receptor agonist that demonstrates superior efficacy in reducing HbA1c and body weight compared to conventional agents. The advent of onceweekly basal insulins such as insulin icodec and efsitora alfa signifies a paradigm shift in insulin therapy, reducing injection burden while maintaining stable glycemic profiles. Additionally, Lantidra, the first FDA-approved allogeneic pancreatic islet cell therapy, offers a functional cure for select patients with type 1 diabetes, eliminating the need for exogenous insulin. The investigational compound harmine, known for its DYRK1A inhibitory properties, shows promise in stimulating human β-cell proliferation, potentially enabling endogenous insulin regeneration. Emerging therapies like Merilog and TIX-100, though in earlier stages, represent next-generation molecules targeting unique pathways for improved glycemic and metabolic outcomes. Together, these advances underscore a shift towards personalized, patient-centric diabetes management, with a focus on longterm efficacy, safety, and quality of life improvements.

### **INTRODUCTION**

Diabetes mellitus is a prevalent comorbidity associated with increased healthcare burden, reduced patient well-being, and elevated mortality rates [1]. Diabetes affected 10.5% of adults (536.6M) in 2021 and is projected to reach 12.2% (783.2M) by 2045, with higher rates in older adults, urban areas, and wealthier countries[2]. Diabetes persists as

a significant concern in healthcare systems globally. Type 2 diabetes, the most common and often preventable form, is increasing globally due to rising obesity or driven by various factors. Early detection can reverse it in some cases, but prevention remains challenging. Understanding population-specific risk and burden is vital for effective

control strategies[3]. Type 1 and type 2 diabetes significantly impact both public health and economic stability in communities [4,5]. According to Ho Municipality, Ghana a cross-sectional hospital-based study carried and reported that Engaging in moderate physical activity may improve both glycaemic control and blood pressure management [5]. While physical activity provides significant health benefits for people with diabetes, high rates of inactivity remain common in this population[6]. Countries with large adult populations also have the highest diabetes numbers, with China (98.4M) and India (65.1M) leading. Eight of the ten most populous nations are also among the top ten for adult diabetes cases. Diabetes prevalence rises with age in all regions and income groups, peaking at 18.6% in those aged 60-79. However, most cases (184 million) are in the 40-59 age group, a trend expected to continue over the next 20 years[7]. Rising diabetes rates globally are linked to modern lifestyles, sedentary habits, hereditary, dietary shifts, Urbanisation increasing obesity, Socioeconomic Disparities and other various conditions [8-10]. Diabetes can lead to or enhance the risk of several other serious health conditions due to prolonged high blood sugar levels and metabolic imbalances which include Cardiovascular diseases'(like myocardial infarction, stroke and heart failure)[11], Kidney Disease (Diabetic Nephropathy is a leading cause of end-stage renal disease (ESRD) [12], Disorders (Diabetic Retinopathy) Eve [13], Nerve Damage (Diabetic Neuropathy) [14], Diabetic foot ulcers [15], Skin infections [16], Alzheimer's Disease and Cognitive Decline [17],dental problems (Periodontitis) [18], Depression and Mental Health Issues[19]. Type 2 diabetes accounts for over 95% of all diabetes cases globally. In 2017, it affected around 462 million people, representing 6.28% of the world's population. While less common, type 1 diabetes is increasing, particularly among children and adolescents. The number of individuals under 20 years living with type 1 diabetes is estimated to be over 1.5 million globally. Projections indicate that the number of adults with diabetes will increase from 537 million in 2021 to 783 million by 2045[20,21]. In recent years, advancements in diabetes management and treatment have ushered in a new era of therapeutic options, ranging from

cutting-edge medications to innovative technologies. Among the most promising treatments, Tirzepatide [22], Merilog [30], Orforg lipron[32], Lantidra[34], Ozempic[36], and TIX100[44] stand out as potent contenders in the fight against type 2 diabetes and represent weightloss. These therapies significant strides in the development of medications that target the underlying mechanisms of the disease. Meanwhile, longacting insulin formulations such as Insulin Icodec and Insulin Efsitora are redefining how insulin therapy can be delivered to enhance patient outcomes with less frequent dosing[49,55]. In addition to pharmaceutical advancements, the artificial pancreas system has emerged as a breakthrough in personalized diabetes care, offering automated glucose control for those with type 1 diabetes [96].On the horizon, natural and cell-based therapies, including the use of Harmine, are being explored for their potential to regenerate pancreatic cells and restore insulin production[86]. These novel approaches, combined with sophisticated technologies, are setting the stage for a future where diabetes management may become more effective, personalized, and less invasive. This article delves into the most recent innovations in diabetes therapy, providing an overview of their mechanisms, benefits, and future potential[97].

# NOVEL THERAPIES FOR DIABETES MELLITUS:

**TIRZEPATIDE:** Tirzepatide (Mounjaro), developed by Eli Lilly and approved by the FDA in May 2022, is the first dual GLP-1 and GIP receptor agonist ("twincretin") that significantly lowers blood glucose, improves insulin sensitivity and lipid metabolism, and reduces body weight by over 20%. As a synthetic GIP analog with acylation for albumin binding, it enables subcutaneous once-weekly ushering in a new era of dual therapies for diabetes, obesity, and cardiometabolic Tirzepatide demonstrated diseases[22]. safety and efficacy for weight management in adults with T1D, leading to significant weight loss, reduced insulin doses, and improved glycemic control over 8 months. Additionally, three years of tirzepatide treatment in individuals with obesity and prediabetes sustained substantial weight loss and significantly reduced progression to type 2 diabetes compared to placebo [23,24]. Further research is warranted to understand subgroup differences glycemic responses and outcomes in older, frail populations. In the SURMOUNT-2 trial, tirzepatide significantly improved physical and psychosocial HRQoL in participants with obesity and T2D, with greater benefits seen in those achieving more weight loss and those with baseline physical limitations [25,26]. Additional Tirzepatide advantages: improves hemodynamics, reduces blood pressure, circulatory volume expansion, systemic inflammation, myocardial injury enhances renal and functional outcomes in obesity-related HFpEF, offering sustained and multifaceted clinical benefits [27-29].

- 2. MERILOG: The FDA approved Merilog (insulin-aspart-szjj) as the first rapid-acting insulin recently in february 2025 which is biosimilar to Novolog for improving glycemic control in adults and children with diabetes[30]. Available in prefilled pens and vials, Merilog is administered subcutaneously within 5–10 minutes before meals, with individualized dosing based on patient needs. It is designed to manage mealtime blood sugar that enhances glycemic control and is offered in both a 3 mL single-patient-use pen and a 10 mL vial for multiple doses.[30]
- 3. Orforglipron: Orforglipron, a non-peptide oral GLP-1 receptor agonist, shows promising efficacy in the treatment of type 2 diabetes mellitus (T2DM). Meta-analysis results indicate that Orforglipron significantly reduces HbA1c and fasting plasma glucose (FPG) levels compared to placebo, although weight loss benefits are less consistent. Gastrointestinal side effects (nausea. vomiting. diarrhea) were common, particularly during escalation, though no clear dose-dependent pattern was observed in early-phase trials, likely due to small sample sizes. Unlike injectable or peptide-based therapies, Orforglipron offers improved bioavailability without fasting requirements, enhancing its clinical convenience. These findings suggest Orforglipron has strong potential as a future oral therapy for T2DM, though

- larger and longer studies are needed to confirm its long-term efficacy and safety[32]. After 12 weeks, Orforglipron significantly reduced HbA1c, fasting glucose, and body weight, with a safety profile similar to other GLP-1RAs and convenient once-daily oral dosing without food or water restrictions, offering a promising treatment for T2D and other conditions [31].Orforglipron demonstrated a favorable safety profile across clinical with mild moderate to gastrointestinal events as the most common adverse reactions. Pharmacokinetic studies reported a half-life between 29–67.5 hours, supporting once-daily dosing without food restrictions. In Phase Ia and Ib trials, Orforglipron led to significant weight loss (up to 5.8 kg) and HbA1c reductions (1.5– 1.8%) over 12 weeks in T2DM patients. Phase II trials showed even greater benefits, with HbA1c reductions of up to 2.10% and weight losses of 9.4% to 14.7% in both diabetic and non-diabetic obese patients, positioning Orforglipron as a promising oral therapy for T2DM and obesity[33].
- 4. LANTIDRA: The **FDA** approved Lantidra, the first cellular therapy made from deceased donor pancreatic cells, for adults with type 1 diabetes who struggle to control HbA1c due to recurrent severe hypoglycemia. Administered via a single infusion into the hepatic portal vein, Lantidra enables donor beta cells to produce insulin, potentially eliminating the need for injections. In two nonrandomized studies of 30 patients, 21 stopped insulin use for at least one year, with 10 remaining insulin-free for over five years[34]. The future of islet transplantation, including Lantidra, holds both challenges and opportunities. While Lantidra is now covered by many U.S. private insurers and benefits from updated shipping protocols extending its shelf life to 48 hours, widespread adoption remains complex. In 2024, the University of Illinois Health began offering Lantidra therapy, with plans for multicenter expansion by 2025[35]. Although the FDA recently approved Lantidra, major barriers still prevent islet transplantation from becoming standard care for all type 1 diabetes patients [36].

Key challenges include donor islet scarcity, the need for systemic immunosuppression, high costs, and restrictive U.S. regulations that classify allogeneic islets as biologic drugs requiring costly BLA approval [37]. These regulatory constraints have led to a steep decline in islet transplantation procedures, 179 (1999–2005) to only 11 (2016–2019), in contrast to other countries that treat islets as minimally manipulated tissue and offer them as standard clinical care [38,39]. Experts propose regulatory updates to improve access, affordability, and outcomes for patients with severe hypoglycemia [40].

- 5. OZEMPIC: A GLP-1 receptor agonist, semaglutide has demonstrated meaningful weight loss in patients with type 2 diabetes Among high-risk [41]. patients, semaglutide significantly reduced rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke relative to placebo, confirming its cardiovascular noninferiority[42]. Furthermore, in patients with chronic kidney disease, semaglutide the risk of critical kidney lowered outcomes and cardiovascular death[43].
- 6. TIX 100: TIX100, a novel oral TXNIP inhibitor, protects against high-fat dietinduced glucose intolerance, hyperinsulinemia, hyperglucagonemia, and adiposity while preserving lean mass, without the liver and lipid abnormalities seen with some other agents. The observed enhancements in glucose homeostasis and reduction in glucagon levels mirrors the protective effects seen with genetic TXNIP deficiency and beta cell-specific TXNIP deletion in various diabetes models,[44] as well as decreased glucagon secretion **TXNIP** alpha cell following deletion,[45]and, unlike some glucagon receptor antagonists, enhances plasma cholesterol, triglycerides, and ALT levels without adverse liver effects[46]. TIX100, in high-fat diet (HFD) models, reduced and improved weight gain glucose metabolism (blood glucose, HbA1c. insulin, glucagon) without major weight loss. It enhanced leptin sensitivity, reduced food intake, and improved islet function while avoiding gastrointestinal side effects seen with GLP-1 agonists. Its metabolic effects were dependent on TXNIP, as they

- were lost in TXNIP-deficient mice. Unlike verapamil, TIX100 is safer, as it doesn't affect calcium channels. TIX100 has the potential to serve as a novel oral therapy for managing both T1D and T2D. Preclinical studies show TIX100 is more potent than verapamil, metformin, and empagliflozin. Recently FDA-approved for clinical trials in T1D, TIX100 shows promise for diabetes treatment, focusing on islet preservation and glucose regulation[47].
- 7. ONCE WEEKLY INSULIN (Insulin icodec, insulin efsitora alfa): Insulin therapy has advanced over the past century, with once-weekly insulins like icodec and efsitora offering a significant breakthrough in basal insulin treatment [49]. Both create a circulating reservoir of insulin for sustained release, with icodec conjugated to HSA and efsitora using a novel insulin-IgG2 Fc fusion. modifications reduce insulin's affinity for the insulin receptor (IR), slowing clearance and extending activity for weekly dosing [50].Icodec, with a half-life of 8 days, and efsitora, with a half-life of 17 days, provide similar efficacy to daily insulins with low hypoglycemia rates in T2D patients [51]. However, caution is needed for T1D patients until more data is available. Ongoing research, including CGM data, will provide more insights into their safety and effectiveness [52]. These insulins reduce injection burden, improve adherence, and may offer benefits such as fewer healthcare visits and more stable glucose control [53]. Additionally, the stable glucose profiles of weekly insulins could improve self-sufficiency in these patients, limit insulin titrations, and potentially reduce diabetic ketoacidosis (DKA) in non-compliant T1D patients, especially teenagers [54].

**INSULIN ICODEC:** Among 50 participants with T2D in a Phase 1 trial, icodec exhibited a median tmax of 16 hours and maintained a mean half-life of 8 days [55]. Participants received once-weekly icodec or daily IDeg, with glucose-lowering effects measured over 7 response The pattern remained consistent, with a modest rise observed on day 3 followed by a subtle decline on day 7 [56]. serious adverse events No or severe hypoglycemia were reported. A second study showed that icodec's exposure and glucoselowering effects were consistent across different injection sites (thigh, abdomen, or upper arm)[57]. In Phase 2 studies on icodec in T2D patients explored dosing and titration strategies to inform phase 3 trials. In a 26week trial of insulin-naive patients, icodec showed similar HbA1c reductions to daily IGlar U100, but with higher rates of level 1 hypoglycemia [58]. Another 16-week trial tested different titration approaches, finding the best balance of glycemic control and low hypoglycemia with a target glucose of 80-130 mg/dL and a weekly dose change of ±21 units [59]. A study on switching from daily basal insulins to weekly icodec showed that a loading dose improved time in range (TIR) and transient hyperglycemia minimized icodec demonstrated comparable Overall, **IGlar** U100, with efficacy to hypoglycemia rates [61]. The use of a loading dose was particularly effective for patients transitioning to icodec[62]. The ONWARDS phase 3 program for icodec consisted of six clinical trials, focusing on T2D and T1D patients [63]. ONWARDS 1 to 5 were treat-totarget studies comparing icodec to once-daily insulins (IGlar U100, IDeg) and/or placebo, with ONWARDS 6 testing icodec in T1D patients [64]. Insulin doses were titrated to a prebreakfast glucose target of 80-130 mg/dL with specific adjustments for icodec and daily comparators [65]. The studies included insulinnaive (ONWARDS 1, 3, 5) and insulin-treated (ONWARDS 2, 4) populations. Starting doses for icodec were based on weekly totals, with some studies using a loading dose [66]. All studies met their primary endpoints of noninferiority to comparators for HbA1c reduction, with ONWARDS 1, 2, 3, and 5 showing statistically significant superiority in HbA1c reduction[67.68]. The ONWARDS 2 and 4 studies assessed the efficacy and safety of icodec compared to once-daily basal insulins (IDeg and IGlar U100) in patients with T2D[63,64].

ONWARDS 2 (26 weeks) showed that icodec reduced HbA1c from 8.2% to 7.2%, compared to 7.4% with IDeg, confirming noninferiority and superiority of icodec. An increase in hypoglycemia was evident with icodec, yet TBR measurements showed no meaningful variation. A modest increase in body weight

(+1.4 kg with icodec vs −0.3 kg with IDeg) was noted, and patients preferred icodec based on treatment satisfaction scores[64,66].

ONWARDS 4 (26 weeks) showed similar HbA1c reductions (8.3% to 7.1% for both icodec and IGlar U100). Both groups maintained equivalent TIR and TAR values, yet level 1 hypoglycemia rates were elevated in the icodec group (31.5 vs 24.9 events per patient-year) [65,67]. The total insulin dose was lower for icodec, especially in the basal component, though body weight increases were similar between groups [69]. Post-hoc analyses revealed no significant differences in TIR or hypoglycemia duration at steady state[72,73].

**ONWARDS 6** was a 52-week comparing icodec and IDeg in type 1 diabetes patients. Icodec showed noninferiority to IDeg in HbA1c reduction (-0.37% vs -0.54%) at 52 weeks, but had significantly higher rates of combined level 2 or 3 hypoglycemia (19.93 vs 10.37 events per PYE) and nocturnal hypoglycemia. TIR and TAR were similar between the groups, with neither meeting guideline targets [55,68]. Icodec required higher basal insulin doses but lower bolus doses, with similar total weekly insulin doses between treatments. Body weight changes and overall treatment satisfaction favoured IDeg. The study suggests more research is needed, particularly using CGM-guided titration, to optimize icodec use in T1D and reduce hypoglycemia risk[70,71].

Clinical pharmacological studies: A study by Pieber et al. investigated hypoglycemia risk with icodec compared to IGlar U100 in patients with T2D, focusing on clinical, physiological, and counter regulatory responses to double and triple doses [74,75]. Both insulins caused similar rates of clinically significant hypoglycemia, but icodec showed faster recovery times, though the risk of recurrence remained due to its longer duration of action[76,77]. CGM data indicated low time spent in hypoglycemia after doses, even for those with significant hypoglycemia [78, 79]. Additional studies on renal and hepatic impairment indicated no major differences in icodec exposure, suggesting no dose adjustments are necessary for these populations [80,81]. Overall, practices for managing hypoglycemia with icodec comparable to daily insulins [82], though further research in high-risk groups is recommended[83,84].

INSULIN EFSITORA: In Phase 1 studies, efsitora demonstrated glucose-lowering effects within 3 days of administration, with sustained fasting plasma glucose (FPG) reduction for at least 5 days. The pharmacokinetic (PK) profile showed peak concentration (tmax) at 4 days post-dose and a half-life of approximately 17 days[77]. Hypoglycemic events with efsitora were similar to those seen with IGlar U100. In the multiple ascending dose (MAD) study, a loading dose strategy (3x weekly dose) accelerated time to steady-state concentration, and efsitora concentrations remained flat across all doses, showing a 14% increase in PK levels over a week[55].

In Phase 2 studies, efsitora was compared to degludec (IDeg) insulin and showed noninferiority in HbA1c reduction [78]. In T2D patients on basal insulin, efsitora had fewer hypoglycemic events and a lower weight gain (1.0 kg vs. 2.0 kg with IDeg) [79]. In insulin-naive T2D patients, efsitora also showed noninferiority in HbA1c reduction and had similar hypoglycemia rates compared to IDeg, with better time-in-range (TIR) and lower time-below-range (TBR) [80]. In T1D patients, efsitora was noninferior to IDeg in HbA1c reduction, with similar TIR and hypoglycemia rates. However, efsitora patients showed smaller weight gain (0.1 kg vs. 0.6 kg with IDeg) [81]. An initial period of hyperglycemia was observed in T1D patients due to potential underdosing, indicating the need for better dosing adjustments [82]. The ongoing Phase 3 QWINT trials are further investigating efsitora's efficacy, safety, and tolerability in T2D and T1D patients, comparing it with standard daily insulin regimens[85].

### NATURAL AND CELL THERAPIES:

**HARMINE:** Harmine, a tricyclic  $\beta$ -carboline alkaloid from Peganum harmala L., has attracted attention for its broad biological activities. Recent research (2019-2024)highlights the enhanced therapeutic potential of harmine derivatives. A comprehensive review of studies from major scientific databases explored their biological effects, structure-activity relationships, and emerging applications, including those involving nanotechnology. Notably, the biological activities of harmine contained antidiabetic

properties [86]. Peganum harmala, through its key alkaloids harmine and harmaline, shows potential regulating in homeostasis and enhancing insulin sensitivity [87]. Unlike synthetic GLP-1 receptor agonists like semaglutide, P. harmala stimulates the endogenous secretion of GLP-1 by activating glucose-sensing pathways in enteroendocrine primarily through L-cells, Akt/GLUT4 signaling. This leads to increased GLUT4 translocation, glucose uptake, and GLP-1 exocytosis [88, Additionally, P. harmala activates the Nrf2 antioxidant pathway, reducing oxidative stress in L-cells and sustaining GLP-1 production. It also improves insulin sensitivity enhancing PI3K/Akt signaling reducing insulin resistance markers pS307-IRS-1. Furthermore, inhibition of GSK-**3β** by harmine and harmaline enhances Nrf2 activity, reinforcing antioxidant defenses[90,91]. Thus, P. harmala acts as a dual therapeutic agent, improving insulin action and combating oxidative stress — both critical in diabetes and related neurodegenerative conditions [92]. Furthermore, structural modifications and the application of nanocarriers make harmine and its derivatives more druggable [86]. However, low bioavailability of harmine and harmaline remains a challenge to its clinical application [93,94].

**BETA CELL REGENERATION VIA HARMINE:** Harmine B-cell promotes proliferation via the DYRK1A-NFAT pathway but lacks selectivity. To improve this, 29 harmine analogs were synthesized, leading to the identification of 2-2c, a novel DYRK1A inhibitor with enhanced selectivity, reduced CNS off-target effects, and superior β-cell regeneration efficacy at lower doses, making it promising candidate for diabetes treatment[95].

ARTIFICIAL PANCREAS SYSTEM: Insulin therapy, essential for diabetes care, is evolving with wearable technologies like continuous glucose monitors (CGMs) and closed-loop insulin delivery systems [96]. Recent advances integrate artificial intelligence to enhance glucose control, aiming to create artificial pancreas systems [97]. While promising, challenges remain regarding device accuracy, algorithm safety, and data privacy [98]. Wearable devices and AI-driven systems

are paving the way for more natural and responsive diabetes management, potentially transforming the treatment landscape for type 1 diabetes [99,100].

Wearable devices are transforming type 1 diabetes (T1D) management by enabling precise, real-time monitoring and insulin delivery without disrupting daily life [101]. Continuous glucose monitors (CGMs) track glucose levels dynamically, improving lifestyle management and reducing the need for frequent blood tests [102]. Advances include electrochemical sensors and noninvasive technologies like optical and electromagnetic methods [103,104]. parallel, continuous subcutaneous insulin infusion (CSII) systems, such as smart insulin pens and pumps, offer more accurate and userfriendly insulin delivery, improving glycemic control. reducing hypoglycemia, enhancing patient quality of life[105,106]. Wearable technologies have advanced CGM systems and insulin delivery, enabling the creation of closed-loop artificial pancreas (AP) systems that automate insulin dosing based on real-time glucose data[107]. These systems improve diabetes management and quality of life but still face risks like hypoglycemia and hyperglycemia. Accurate and adaptable prediction models are vital to address individual glucose variability [108]. Glucose prediction models use CGM data to forecast blood sugar trends and serve as early warning systems, but they must account for lifestyle and environmental factors[109,110]. Tools like Clarke Error Grid Analysis help evaluate prediction accuracy, though each method has specific strengths and limitations depending on the clinical goals [111]. Advances in glucose prediction have evolved from traditional mathematical models to data-driven machine learning (ML) and deep learning approaches [112]. Early models like AR, ARX, and ARMAX improved short-term forecasting accuracy but struggled with complex, nonlinear glucose dynamics [113]. Machine learning methods, including support vector regression (SVR) and random forests (RF), enhanced predictions by analyzing factors such as meals, insulin, and physical activity, achieving high accuracy (up to 94% for nocturnal hypoglycemia) [114,115]. Deep neural networks (DNNs), particularly recurrent structures like LSTMs and GRUs, further

boosted performance by capturing temporal patterns, with LSTMs achieving lower prediction errors  $(\sim 12.38 \text{ mg/dL})$ RMSE) [116,117]. Recently, Transformer models, using multihead self-attention, have surpassed traditional RNNs in handling long sequences and uncertainty, delivering highly accurate multi-step glucose forecasts and opening new possibilities for closed-loop diabetes management [118,119].

## Diabetes Management: Datasets for Research and Algorithm Development:

Effective use of machine learning and AI in diabetes management requires high-quality datasets for model development. This section introduces four key datasets descripted in table 1[117-121]. While these datasets support the development of glucose prediction and control models, challenges remain due to variations in data quality, monitoring durations, sampling rates. Future efforts aim to collect more diverse and comprehensive physiological improve model accuracy and data to reliability[122].

Automated Insulin Delivery Algorithms: Automated insulin delivery (AID) systems aim to ease the burden of insulin therapy in T1D by using wearable devices and smart algorithms to automatically monitor glucose and adjust insulin doses. Key approaches include: Fuzzy Logic (FL), Model Predictive Control (MPC), Reinforcement Learning (RL) presented in table 2 [123-129].

Advancing Diabetes Control: Challenges, Innovations, and Future Outlook: Despite advancements in closed-loop diabetes control, several challenges must be overcome. Some of them are as follows:

Bridging the Gap: Artificial vs. Natural **Dynamics: Pancreas** Current artificial pancreas (AP) systems rely mainly on glucose monitoring and insulin delivery, missing the complex hormone interactions of a natural pancreas [130,131]. Future systems may use multisensing wearable devices and dualhormone delivery (insulin + glucagon) for better glucose regulation, with technologies like micro needles and organic electrochemical transistors improving monitoring accuracy[132,133].

Redefining Glucose Monitoring: Noninvasive Solutions: Next-generation CGMs aim to be painless and user-friendly through noninvasive methods (e.g., optical, electromagnetic), but still face challenges like physiological lag and interference factors [134,135]. Combining multimodal sensing and machine learning could boost prediction accuracy and device reliability [136].

Improving Model Training with Reliable Data: Prediction models often suffer from generalization issues due to patient variability and imbalanced datasets [134]. Future work must focus on more diverse, comprehensive data collection and apply techniques like transfer learning and advanced pre-processing to improve model robustness [137,138].

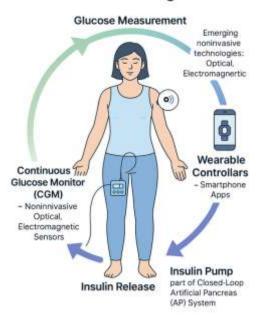
**Edge-Intelligent Systems for Real-Time Diabetes Management:** Deep learning models need to run efficiently on edge devices (e.g., smart watches, CGMs) for real-time, offline glucose management. Techniques like model compression, quantization, and pruning are crucial [134]. The ultimate goal is an AIwearable driven. "cyborg pancreas" responsive personalized and diabetes management. Edge computing also enhances data privacy by minimizing data transmission risks [137].

**FutureVision:** The goal is to develop intelligent, AI-powered wearable artificial pancreas systems that integrate multisensing [132], dual-hormone therapy, and personalized glucose management [134], significantly improving diabetes care and quality of life[139].

**TRANSDERMAL INSULIN:** Recent advancements in Needle-free transdermal jet technology have opened new avenues for insulin administration, offering a non-invasive

alternative to conventional subcutaneous injections[140]. Various types of transdermal (TD) insulin delivery systems exist, but the ones that have progressed to clinical trials include TD patches, microneedle-based delivery systems, and TD insulin jet injectors. A total of 18 clinical studies have evaluated these methods.

### Modern Technologies in Diabetes Management



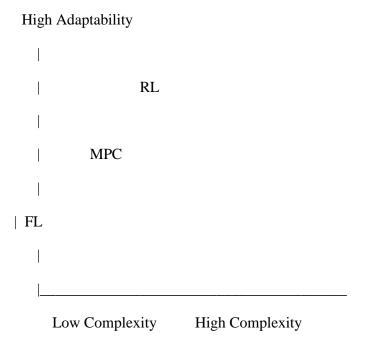


Figure 1:Empowering Diabetes Patients Through Connected Care i.e. This image illustrates how integrated technology simplifies glucose tracking and insulin delivery for improved daily management.

Table 1:Overview of Key Diabetes Datasets: A comparative summary of real-world and simulated datasets used in diabetes research, highlighting participant profiles, types of data collected, and unique features for each dataset.

| Dataset               | Participants                 | Data Collected                                                  | Special Features                                         |
|-----------------------|------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|
| OhioT1DM              | 12 T1D patients              | CGM, insulin dosing, physiological sensors, life events         | Visualization tool;<br>extended from 6 to 12<br>subjects |
| UVA/Padova<br>T1DMS   | Simulated (virtual patients) | Simulated glucose, insulin, meals, hyper/hypoglycemia events    | Realistic simulation;<br>updated S2013 version           |
| D1NAMO                | 20 healthy + 9 diabetic      | CGM, insulin, 34 physiological metrics (e.g., ECG, temperature) | Most comprehensive;<br>limited CGM duration              |
| Shanghai<br>T1DM/T2DM | 12 T1D + 100<br>T2D patients | CGM, clinical profiles, labs, medications, dietary records      | Real-world data from diverse patients                    |

Table 2: Comparison of Automated Insulin Dosing Algorithms: Summary of key features, advantages, and limitations of Fuzzy Logic, Model Predictive Control, and Reinforcement Learning approaches in diabetes management systems.

| Method                  | <b>Key Features</b>                     | Strengths                                  | Limitations                                       |
|-------------------------|-----------------------------------------|--------------------------------------------|---------------------------------------------------|
| Fuzzy Logic (FL)        | Rule-based using expert-defined glucose | Handles uncertainty; simple implementation | Poor personalization;<br>limited in complex cases |
| 36 110 114              | ranges                                  | D : 1 :                                    |                                                   |
| <b>Model Predictive</b> | Predicts future glucose                 | Dynamic dosing                             | Requires accurate                                 |
| Control (MPC)           | trends and adjusts                      | optimization; responsive                   | models; computationally                           |
|                         | insulin proactively                     | to real-time changes                       | heavier                                           |
| Reinforcement           | Learns optimal dosing                   | Highly adaptive and                        | Needs a lot of training                           |
| Learning (RL)           | policies over time                      | personalized; handles                      | data; longer                                      |
|                         | from experience                         | complexity                                 | development                                       |



- ightharpoonup FL ightharpoonup Low complexity, but low adaptability (good for simple cases).
- **♦MPC** → Moderate complexity, moderate-to-high adaptability (good for dynamic adjustments).
- **♦ RL** → High complexity, very high adaptability (best for personalization but requires more data and training)[123-129].

Effectiveness Tolerability Preference
Less Preference
Less Preference
Higher Preference
Higher Preference
Higher Preference

Companison of Transdermal (TD) vs. Subcutaneous (SC) Insulin Delivery in Clinical Studies

Figure 2: Results of comparable clinical studies on Transdermal insulin and traditional methods.

Table 3: Comparison of Artificial Pancreas Systems and Transdermal Insulin Pumps: An analytical overview of two advanced insulin delivery methods based on delivery routes, control mechanisms, integration, precision, and clinical suitability.

| Insulin Delivery            | Subcutaneous (via cannula/tubing)        | Transdermal (via skin using           |
|-----------------------------|------------------------------------------|---------------------------------------|
| Route                       |                                          | microneedles, iontophoresis, etc.)    |
| Control Type                | Automated (closed-loop with CGM &        | Semi-automated or manual              |
|                             | algorithm)                               |                                       |
| Speed of Insulin            | Fast (subcutaneous absorption)           | Slower and variable                   |
| Action                      |                                          |                                       |
| <b>Precision &amp; Dose</b> | High – responds every 5–10 minutes       | Moderate – limited to sustained       |
| Control                     | using algorithms                         | release patterns                      |
| Integration with            | Yes – tightly integrated for closed-loop | Rarely – typically standalone         |
| CGM                         | feedback                                 | systems                               |
| Device                      | CGM sensor, insulin pump, control        | Patch, insulin reservoir, transdermal |
| Components                  | algorithm (smartphone or dedicated)      | delivery system                       |
| <b>User Involvement</b>     | Minimal (mostly automatic)               | Moderate – often needs setting or     |
|                             |                                          | replacing patches                     |
| Best for                    | Type 1 diabetes patients needing tight   | Type 2 or early-stage Type 1          |
|                             | glycemic control                         | diabetes, needle-phobic patients      |
| Commercial                  | Widely available (e.g., Medtronic        | In development or limited release     |
| Availability                | MiniMed 780G, Tandem Control-IQ)         | (e.g., microneedle patches)           |
| Challenges                  | Cost, complexity, frequent calibration   | Slower response, limited control      |
|                             |                                          | over sudden glucose changes           |

The findings indicate that TD insulin delivery is either more effective or at least comparable traditional subcutaneous (SC) insulin administration in terms of efficacy, safety, and patient preference.visual summary of findings clinical studies comparing from 18 Transdermal (TD) insulin delivery Subcutaneous (SC) insulin delivery presented below in the figure 2[140]. As an innovative form of transdermal administration, microneedle (MN) patches offer distinct advantages such as accuracy, reduced pain, and better regulation, positioning them as a compelling alternative to traditional routes [141]. Each microneedle (MN) array consists of multiple tiny needle-like projections anchored on a base substrate, which carry therapeutic agents and penetrate the outermost skin layer to create painless for drug microchannels delivery [142,143]. Upon contact with interstitial fluid, the microneedle tips swell or dissolve, enabling autonomous drug release providing sustained delivery to the epidermis dermis over an extended upper period[144,145]. The comparison of Artificial pancreas system and transdermal insulin system is described in the below table 3[96,97,98,99,141,144,145].

### **Diabetes management in pediatrics:**

An estimated 7.4 million individuals in the United States with diabetes rely on insulin therapy. Of these, about 1.6 million (5–10%) have type 1 diabetes (T1DM), including approximately 200,000 individuals under 20 years of age and over 1 million adults[146]. All individuals with T1DM require insulin therapy, with most using multiple daily injections (MDI)[147]. By estimation, around 5.8 million Americans with type 2 diabetes (T2DM) are also treated with insulin [148].

**Tracking** Insulin Pens (Stages 1-3): Tracking insulin pens use wireless communication and sensors to offer increasingly sophisticated tracking features, addressing many of the challenges associated with insulin management [153]. For instance, Novo Nordisk's NovoPen Echo Plus (Stage 1) provides accurate retrospective dose data. There are also attachments, such as Clipsulin by Diabnext and Gocap by Common Sensing, that interface with apps to track doses, though Gocap is not yet commercially available. These devices are subject to regulatory review processes, including 510(k) exemption, clearance, or approval [154,155].

Insulin **Pens Smart** (Stages 4-5): Smart insulin pens mark a significant leap forward in the evolution of insulin delivery systems. By syncing with smartphones, these pens provide intelligent features that optimize insulin management [156]. The Companion Medical InPen System, FDA-cleared in 2017, is the first smart insulin pen in the U.S. Smart aim to address many challenges associated with insulin management, offering advanced features like weight-based therapy settings and dynamic dose titration. Though there are currently no smart insulin pens in Stage 5, the future of these devices looks promising with expectations of global growth [157]. Smart Insulin Pens (SIPs) offer two key from Continuous Subcutaneous features Insulin Infusion (CSII): personalized insulin dosing and data tracking for effective diabetes management [157]. Smart Insulin Pens (SIPs) play a significant role in enhancing therapy goals like safety, data-driven management, and improving the quality of life (OoL) for individuals on multiple daily injections (MDI). The InPen (Companion Medical, 2017), the first FDA-approved SIP in the U.S., connects via Bluetooth to a smartphone app, providing personalized insulin dose calculations and automatic data tracking. While the pen continues to function after the battery dies, it loses its smart features without the app[158]. On the other hand, the Bigfoot Unity (Bigfoot BioMedical, 2021) is a smart pen cap that integrates continuous glucose monitoring (CGM) data with healthcare provider instructions, offering insulin recommendations and adjustments based on both insulin and CGM data[159].These technologies aim to streamline insulin management, making it more personalized and efficient for users[158,159]. While there is some literature on SIP use, especially in adults, there is limited research, particularly regarding pediatric use [160].

# SIP Data-Driven Diabetes Management and Benefits in Pediatrics:

**Data-Driven Diabetes Management:** The rise of telemedicine has highlighted the importance of data-driven diabetes management, with SIPs enabling remote data review and pattern management [161]. SIPs improve patient satisfaction, quality of life (QoL), and time-inrange, showing positive outcomes in adults,

such as fewer missed boluses and improved clinical results at lower costs [162,163].

While data-driven benefits are established in adults, pediatric-specific results are still limited [164]. SIP technology can ease the burden on caregivers by providing automatic data tracking and reporting [165].

Benefits of SIP in Pediatrics: Ease of Use: SIPs, like InPen, are easier to set up compared to CSII (insulin pumps), requiring less education and offering step-by-step guidance. This makes them an accessible option for families[156]. Reducing Stress: SIPs can help reduce anxiety for both children and parents, especially at diagnosis, by simplifying insulin management and reducing the risk of mistakes like insulin stacking [157]. Convenience for Caregivers: SIPs allow for better tracking and reporting of data to healthcare providers, making it easier for caregivers to manage diabetes remotely [158]. Flexibility for Breaks: SIPs allow patients who typically use CSII to take breaks, such as during social events, while still having bolus calculators and preprogrammed settings [159].

Pediatric-Specific Benefits: SIPs can be customized with appealing designs and features for children, like insulin temperature tracking and alarms, helping ensure better adherence [158,159]. Additionally, using smartphone apps and widgets, parents can monitor real-time data, improving decision-making [160,161]. Challenges in Pediatrics include Adherence Issues, Design Issues, Limited Remote Monitoring, Cost and Accessibility [161].

**Discussion:** Diabetes management is evolving groundbreaking rapidly, fuelled by developments in pharmacological therapies, biotechnological innovations, and digital health tools. Traditional therapies, effective in glycemic control, often fail to address the multifactorial nature of diabetes, such as weight gain, hypoglycemia risk, and long-term β-cell preservation. Technological advancements are reshaping insulin therapy. The introduction of tirzepatide, a dual GIP and GLP-1 receptor agonist, has been a gamechanger, offering improved glycemic control along with substantial weight reduction—a dual benefit especially relevant in type 2 diabetes patients with obesity. Orforglipron, an oral GLP-1 receptor agonist, represents a significant step forward in patient adherence, removing the need for injectable administration. Meanwhile, Lantidra, allogeneic pancreatic islet cell therapy, opens a potential pathway toward insulin independence in selected patients with type 1 diabetes. Although still limited by the need for immunosuppression, its success paves the way future stem-cell or gene-based interventions. Innovations in insulin therapy are equally revolutionary. By minimizing injection burden, once-weekly insulin icodec streamlines diabetes management promotes greater adherence. Additionally, the development of smart insulin pens, CGM devices, and the artificial pancreas integrate therapeutics with real-time glucose monitoring and automated decision-making-creating a closed-loop system that mimics physiological insulin release. Despite these advancements, persist. challenges High costs. limited accessibility in low-resource settings, regulatory hurdles, and the need for long-term remain critical data barriers widespread adoption. Moreover, integration of digital health tools requires robust patient education and infrastructure.

CONCLUSION: The current era marks a transition from conventional, one-size-fits-all approaches to more refined, targeted, and patient-friendly treatment strategies in diabetes care. Novel pharmacological agents and digital tools are not only improving metabolic outcomes but also enhancing patient satisfaction and quality of life. These novel interventions are more than incremental advancements—they are paradigm shifts that bring us closer to personalized, patient-centric diabetes care. However, realizing their full potential demands a coordinated approach involving clinicians, researchers, makers, and patient communities.

#### **Future Vision:**

Looking ahead. the future of diabetology is set to be revolutionized by multifaceted advancements in science and technology. Personalized medicine will play a key role, with pharmacogenomics enabling tailored drug selection and dosing based on individual genetic and metabolic profiles. Breakthroughs in gene and cell-based therapies, including stem cell-derived solutions and gene editing tools like CRISPR-Cas9, hold the promise of curing diabetes at its root rather than merely managing it. The evolution of next-generation oral biologics will make it possible to deliver peptides and proteins, such

as insulin and GLP-1 receptor agonists, without injections, thereby improving patient adherence and quality of life. In parallel, wearable and implantable biosensors will offer real-time, non-invasive monitoring of glucose levels and drug delivery, enhancing disease control. Furthermore, artificial intelligence (AI) and machine learning will be increasingly integrated into diabetes care to enable predictive analytics and real-time decision reducing complications support, optimizing therapeutic outcomes. Central to this vision is the commitment to global equity access, supported by low-cost policy-driven manufacturing, distribution strategies, and infrastructure development to ensure that cutting-edge therapies reach all populations. Collectively, these innovations signal a future where diabetes management becomes more proactive, personalized, and potentially curative.

#### **REFERENCES:**

- 1. Chan JCN, Lim L-L, Wareham NJ, Shaw JE, Orchard TJ, Zhang P, et al. The Lancet Commission on diabetes: using data to transform diabetes care and patient lives. *Lancet*. 2020; 396 (10267):2019–82.
- 2. Ong KL, Backholer K, Gasevic D, Hogan A, Lachat C, Murphy M, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet*. 2023; 402(10397):203–34.
- 3. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. *Diabetes Res Clin Pract*. 2022;183:109119.
- 4. Ali MK, Pearson-Stuttard J, Selvin E, Gregg EW. Interpreting global trends in type 2 diabetes complications and mortality. *Diabetologia*. 2022;65(1):3–13.
- 5. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global

- Burden of Disease Study 2019. *Lancet*. 2020;396(10258):1204–22. Erratum in: *Lancet*. 2020;396(10262):1562.
- 6. Osei-Yeboah J, Owiredu W, Norgbe G, Obirikorang C, Lokpo S, Ashigbi E, et al. Physical activity pattern and its association with glycaemic and blood pressure control among people living with diabetes in the Ho Municipality, Ghana. *Ethiop J Health Sci.* 2019; 29(1).
- 7. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. *Diabetes Res Clin Pract*. 2014;103(2):137–49.
- 8. Wong VW, Ekstedt M, Wong GL, Hagström H. Changing epidemiology, global trends and implications for outcomes of NAFLD. *J Hepatol*. 2023;79(3):842–52.
- 9. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. *Diabetes Care*. 2011;34(6):1249–57.
- 10. Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, et al. Animal models of obesity and diabetes mellitus. *Nat Rev Endocrinol*. 2018;14(3):140–62.
- 11. Borén J, Öörni K, Catapano AL, et al. The link between diabetes and cardiovascular disease. *Atherosclerosis*. 2024; 394:117607.
- 12. Rout P, Jialal I. Diabetic Nephropathy [Internet]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025 Jan—. Available from:
- 13. Shukla UV, Tripathy K. Diabetic Retinopathy [Internet]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025 Jan—. Available from:
- 14. Bodman MA, Dreyer MA, Varacallo MA. Diabetic Peripheral Neuropathy [Internet]. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. Available from:
- 15. Akkus G, Sert M. Diabetic foot ulcers: A devastating complication of diabetes mellitus continues non-stop in spite of new medical treatment modalities. *World J Diabetes*. 2022;13(12):1106–21
- 16. David P, Singh S, Ankar R. A Comprehensive Overview of Skin

- Complications in Diabetes and Their Prevention. *Cureus*. 2023;15(5): e38961.
- 17. Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV. Type 3 Diabetes and Its Role Implications in Alzheimer's Disease. *Int J Mol Sci*. 2020;21(9):3165.
- 18. Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K, et al. Periodontitis and diabetes: a two-way relationship. *Diabetologia*. 2012;55(1):21–31.
- 19. Bădescu SV, Tătaru C, Kobylinska L, Georgescu EL, Zahiu DM, Zăgrean AM, et al. The association between Diabetes mellitus and Depression. *J Med Life*. 2016;9(2):120–5.
- 20. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes Global Burden of Disease and Forecasted Trends. *J Epidemiol Glob Health*. 2020;10(1):107–11.
- 21. Magliano DJ, Boyko EJ; IDF Diabetes Atlas 10th edition scientific committee. IDF Diabetes Atlas [Internet]. 10th ed. Brussels: International Diabetes Federation; 2021.
- 22. Chavda VP, Ajabiya J, Teli D, Bojarska J, Apostolopoulos V. Tirzepatide, a new era of dual-targeted treatment for diabetes and obesity: a mini-review. Molecules. 2022 Jul 5;27(13):4315. doi: 10.3390/molecules27134315. Erratum in: Molecules. 2025 Mar 7;30(6):1190.
- 23. Gutierrez RR, Tama E, Bechenati D, Castañeda Hernandez R, Bennett PK, McNally AW, et al. Effect of tirzepatide on body weight and diabetes control in adults with type 1 diabetes and overweight or obesity. Mayo Clin Proc. 2025;100(2):265–75.
- 24. Jastreboff AM, le Roux CW, Stefanski A, Aronne LJ, Halpern B, Wharton S, et al. Tirzepatide for obesity treatment and diabetes prevention. N Engl J Med. 2024;392(10).
- 25. Rasouli N, Wilding JPH, Kwan AYM, et al. Tirzepatide for older adults with type 2 diabetes and without obesity: a post hoc analysis of the SURPASS clinical trials. Diabetes Ther. 2025; 16:701–15.

- 26. Gibble TH, Cao D, Zhang XM, et al. Tirzepatide was associated with improved health-related quality of life in adults with obesity or overweight and type 2 diabetes: results from the Phase 3 SURMOUNT-2 trial. Diabetes Ther. 2025;16:977–91.
- 27. Borlaug BA, Zile MR, Kramer CM, et al. Effects of tirzepatide on circulatory overload and end-organ damage in heart failure with preserved ejection fraction and obesity: a secondary analysis of the SUMMIT trial. Nat Med. 2025;31:544–51.
- 28. Packer M, Zile MR, Kramer CM, Baum SJ, Litwin SE, Menon V, et al. Tirzepatide for heart failure with preserved ejection fraction and obesity. N Engl J Med. 2025;392(5). doi:10.1056/NEJMoa2410027.
- 29. Sokary S, Bawadi H. The promise of tirzepatide: a narrative review of metabolic benefits. Prim Care Diabetes. 2025;19(3):229–37.
- 30. Anderer S. FDA approves first fast-acting insulin biosimilar for diabetes. JAMA. 2025 Apr 15;333(15):1285.
- 31. Pratt E, Ma X, Liu R, Robins D, Haupt A, Coskun T, et al. Orforglipron (LY3502970), a novel, oral non-peptide GLP-1 receptor agonist: a Phase 1a, blinded, placebo-controlled, randomized, single- and multiple-ascending-dose study in healthy participants. Diabetes ObesMetab. 2023 Sep;25(9):2634–41.
- 32. Panpan MA, Sijing W, Na Y, et al. Efficacy and safety of danuglipron and orforglipron in the treatment of type 2 diabetes mellitus: a meta-analysis. Chin Gen Pract. 2025;28(21):2679–85.
- 33. Tu Y, Yu H. Research progress and future prospects of small-molecule glucagon-like peptide-1 receptor agonists (GLP-1RAs). Metab Target Organ Damage. 2025;5:6. doi:10.20517/mtod.2024.99.
- 34. Iqbal A, Sheikh A. Donislecel (Lantidra); first stem cell therapy, a cutting-edge therapeutic option for type 1 diabetes, but would it be beneficial in the riskiest region of the world? Int J Surg Glob Health. 2023;6(5):e0259.

- 35. Wang Y, Chen Y, McGarrigle J, Cook J, Rios PD, La Monica G, et al. Cell therapy for T1D beyond BLA: gearing up toward clinical practice. Diabetes Ther. 2025;16(6):1125–38.
- 36. Mbaye EHA, Scott EA, Burke JA. From Edmonton to Lantidra and beyond: immunoengineering islet transplantation to cure type 1 diabetes. Front Transplant. 2025;4:1514956...
- 37. Bottino R, Knoll MF, Knoll CA, Bertera S, Trucco MM. The future of islet transplantation is now. Front Med. 2018;5:202. doi:10.3389/fmed.2018.00202.
- 38. Zhang JX, Shugarman LR. Value-based payment and financing for cell and gene therapies: challenges and potential solutions. J Med Econ. 2024;27(1):678–81. doi:10.1080/13696998.2024.2346406.
- 39. Witkowski P, Philipson LH, Kaufman DB, Ratner LE, Abouljoud MS, Bellin MD, et al. The demise of islet allotransplantation in the United States: a call for an urgent regulatory update. Am J Transplant. 2021;21(4):1365–75.
- 40. Stabler CL, Russ HA. Regulatory approval of islet transplantation for treatment of type 1 diabetes: implications and what is on the horizon. Mol Ther. 2023 Nov 1;31(11):3107–8.
- 41. Moiz A, Levett JY, Filion KB, Peri K, Reynier P, Eisenberg MJ. Long-term efficacy and safety of once-weekly semaglutide for weight loss in patients without diabetes: a systematic review and meta-analysis of randomized controlled trials. Am J Cardiol. 2024 Jul 1;222:121–30.
- 42. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016 Nov 10;375(19):1834–44. doi:10.1056/NEJMoa1607141.
- 43. Perkovic V, Tuttle KR, Rossing P, Mahaffey KW, Mann JFE, Bakris G, et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N Engl J Med. 2024 Jul 11;391(2):109–21.

- 44. Chen J, Hui ST, Couto FM, Mungrue IN, Davis DB, Attie AD, et al. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xLsignaling and pancreatic beta-cell mass and protects against diabetes. FASEB J. 2008 Oct;22(10):3581–94.
- 45. Lu B, Chen J, Xu G, Grayson TB, Jing G, Jo S, et al. Alpha cell thioredoxin-interacting protein deletion improves diabetes-associated hyperglycemia and hyperglucagonemia. Endocrinology. 2022 Oct 11;163(11):bqac133..
- 46. Scheen AJ, Paquot N, Lefèbvre PJ. Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert OpinInvestig Drugs. 2017 Dec;26(12):1373–89. doi:10.1080/13543784.2017.1395020.
- 47. Jo S, Jing G, Chen J, Xu G, Shalev A. Oral TIX100 protects against obesity-associated glucose intolerance and dietinduced adiposity. Diabetes ObesMetab. 2025 Apr;27(4):2223–31. doi:10.1111/dom.16223.
- 48. Rosenstock J, Juneja R, Beals JM, Moyers JS, Ilag L, McCrimmon RJ. The basis for weekly insulin therapy: evolving evidence with insulin icodec and insulin efsitora alfa. Endocr Rev. 2024 May 7;45(3):379–413. doi:10.1210/endrev/bnad037.
- 49. Xue M, Shen P, Tang J, Deng X, Dai Z. Efficacy and safety of once-weekly insulin versus once-daily insulin in patients with type 1 and type 2 diabetes mellitus: an updated meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2024 Nov 19;15:1459127.
- 50. Wysham C, Bajaj HS, Del Prato S, Franco DR, Kiyosue A, Dahl D, et al. Insulin efsitora versus degludec in type 2 diabetes without previous insulin treatment. N Engl J Med. 2024 Dec 12;391(23):2201–11. doi:10.1056/NEJMoa2403953.
- 51. Nasu R, Oura T, Ohwaki K, Imori M, Furihata K. Pharmacokinetic and pharmacodynamic properties of once-weekly insulin efsitora alfa in Japanese patients with type 2 diabetes. *Diabetes Ther*. 2025 Mar;16(3):513–26. doi:10.1007/s13300-025-01695-x.

- 52. Heise T, Chien J, Beals JM, Benson C, Klein O, Moyers JS, et al. Pharmacokinetic and pharmacodynamic properties of the novel basal insulin Fc (insulin efsitora alfa), an insulin fusion protein in development for once-weekly dosing for the treatment of patients with diabetes. *Diabetes Obes Metab.* 2023 Apr;25(4):1080–90.
- 53. Bergenstal RM, Philis-Tsimikas A, Wysham C, Carr MC, Bue-Valleskey JM, Botros FT, et al. Once-weekly insulin efsitora alfa: design and rationale for the QWINT phase 3 clinical development programme. *Diabetes ObesMetab*. 2024 Aug;26(8):3020–30.
- 54. Dutta D, Nagendra L, Kumar M, Kamrul-Hasan ABM, Bhattacharya S. Optimal use of once-weekly basal insulin efsitora alfa in type 1 and type 2 diabetes: a systematic review and meta-analysis. *EndocrPract*. 2025 Apr;31(4):471–8. doi:10.1016/j.eprac.2024.12.013.
- 55. Nishimura E, Pridal L, Glendorf T, et al. Molecular and pharmacological characterization of insulin icodec: a new basal insulin analog designed for once-weekly dosing. *BMJ Open Diabetes Res Care*. 2021;9(1):e002301.
- 56. Home P. Making sense of weekly insulins. *Lancet Diabetes Endocrinol*. 2023;11(3):140–1.
- 57. Plum-Mörschel L, Andersen LR, Hansen S, et al. Pharmacokinetic and pharmacodynamic characteristics of insulin icodec after subcutaneous administration in the thigh, abdomen or upper arm in individuals with type 2 diabetes mellitus. *Clin Drug Investig*. 2023;43(2):119–27.
- 58. Rosenstock J, Bajaj HS, Janež A, et al. Once-weekly insulin for type 2 diabetes without previous insulin treatment. *N Engl J Med*. 2020;383(22):2107–16.
- 59. Lingvay I, Buse JB, Franek E, et al. A randomized, open-label comparison of once-weekly insulin icodec titration strategies versus once-daily insulin glargine U100. *Diabetes Care*. 2021;44(7):1595–603.

- 60. Bajaj HS, Bergenstal RM, Christoffersen A, et al. Switching to once-weekly insulin icodec versus once-daily insulin glargine U100 in type 2 diabetes inadequately controlled on daily basal insulin: a phase 2 randomized controlled trial. *Diabetes Care*. 2021;44(7):1586–94.
- 61. Philis-Tsimikas A, Bajaj HS, Begtrup K, et al. Rationale and design of the phase 3a development programme (ONWARDS 1–6 trials) investigating once-weekly insulin icodec in diabetes. *Diabetes Obes Metab.* 2023; 25 (2):331–41.
- 62. Silver RJ, Asong M, Begtrup K, Koefoed MM, Heller SR, Rosenstock J. 191-OR: similar hypoglycemia duration with once-weekly insulin icodec vs insulin glargine U100 in insulin-naïve or experienced patients with T2D. *Diabetes*. 2021;70 (Suppl 1):191-OR.
- 63. Rosenstock J, Bajaj HS, Janež A, et al. Once-weekly insulin for type 2 diabetes without previous insulin treatment. *N Engl J Med*. 2020;383(22):2107–16.
- 64. Lingvay I, Buse JB, Franek E, et al. A randomized, open-label comparison of once-weekly insulin icodec titration strategies versus once-daily insulin glargine U100. *Diabetes Care*. 2021;44(7):1595–603.
- 65. Bajaj HS, Bergenstal RM, Christoffersen A, et al. Switching to once-weekly insulin icodec versus once-daily insulin glargine U100 in type 2 diabetes inadequately controlled on daily basal insulin: a phase 2 randomized controlled trial. *Diabetes Care*. 2021;44(7):1586–94.
- 66. Silver RJ, Asong M, Begtrup K, Koefoed MM, Heller SR, Rosenstock J. 191-OR: Similar hypoglycemia duration with once-weekly insulin icodec vs. insulin glargine U100 in insulin-naïve or experienced patients with T2D. *Diabetes*. 2021;70(Suppl 1):191-OR.
- 67. Bajaj HS, Aberle J, Davies M, et al. Once-weekly insulin icodec with dosing guide app versus once-daily basal insulin analogues in insulin-naive type 2 diabetes (ONWARDS 5): a

- randomized trial. *Ann Intern Med.* 2023;176(11):1476–85.
- 68. Rosenstock J, Bain SC, Gowda A, et al. Weekly icodec versus daily glargine U100 in type 2 diabetes without previous insulin. *N Engl J Med*. 2023;389(4):297–308.
- 69. Lingvay I, Asong M, Desouza C, et al. Once-weekly insulin icodec vs once-daily insulin degludec in adults with insulin-naive type 2 diabetes: the ONWARDS 3 randomized clinical trial. *JAMA*. 2023;330 (3): 228–37.
- 70. Philis-Tsimikas A, Asong M, Franek E, et al. Switching to once-weekly insulin icodec versus once-daily insulin degludec in individuals with basal insulin-treated type 2 diabetes (ONWARDS 2): a phase 3a, randomized, open-label, multicentre, treat-to-target trial. *Lancet Diabetes Endocrinol*. 2023;11(6):414–25.
- 71. Mathieu C, Asbjornsdottir B, Bajaj HS, et al. Switching to once-weekly insulin icodec versus once-daily insulin glargine U100 in individuals with basal-bolus insulin-treated type 2 diabetes (ONWARDS 4): a phase 3a, randomized, open-label, multicentre, treat-to-target, non-inferiority trial. *Lancet*. 2023;401(10392):1929–40.
- 72. Russell-Jones D, Babazono T, Cailleteau R, et al. Once-weekly insulin icodec versus once-daily insulin degludec as part of a basal-bolus regimen in individuals with type 1 diabetes (ONWARDS 6): a phase 3a, randomized, open-label, treat-to-target trial. *Lancet*. 2023;402(10413):1636–47.
- 73. Balkau B, Home PD, Vincent M, Marre M, Freemantle N. Factors associated with weight gain in people with type 2 diabetes starting on insulin. *Diabetes Care*. 2014;37(8):2108–18.
- 74. Bajaj H, Ásbjörnsdóttir B, Lehrskov LL, et al. Continuous glucose monitoring insulin-experienced in with individuals type 2 diabetes switched to once-weekly insulin icodec vs comparators: post-hoc analysis. Diabetes **Technol** Ther. 2023;25:A-269.
- 75. Bajaj HS, Ásbjörnsdóttir B, Carstensen L, et al. 804-P: similar hypoglycemia

- duration with once-weekly icodec vs degludec or glargine U100 in insulin-treated T2D—a post hoc CGM analysis from ONWARDS 2 and 4. *Diabetes*. 2023;72(Suppl\_1):804-P.
- 76. Pieber TR, Arfelt KN, Cailleteau R, et al. Hypoglycaemia frequency and physiological response after double or triple doses of once-weekly insulin icodec vs once-daily insulin glargine U100 in type 2 diabetes: a randomized crossover trial. *Diabetologia*. 2023;66(8):1413–30.
- 77. Haahr H, Kristensen NR, Larsen JH, Wagner F-DH, Ignatenko S. 808-P: pharmacokinetic properties of once-weekly insulin icodec in individuals with renal impairment vs normal renal function. *Diabetes*. 2023;72(Suppl\_1):808-P.
- 78. Haahr H, Cieslarova B, Donatsky AM, et al. 809-P: the effect of various degrees of hepatic impairment on the pharmacokinetic characteristics of once-weekly insulin icodec. *Diabetes*. 2023;72(Suppl\_1):809-P.
- 79. Frias J, Chien J, Zhang Q, et al. Safety and efficacy of once-weekly basal insulin Fc in people with type 2 diabetes previously treated with basal insulin: a multicentre, open-label, randomized, phase 2 study. *Lancet Diabetes Endocrinol*. 2023;11(3):158–68
- 80. Kazda CM, Bue-Valleskey JM, Chien J, et al. Novel once-weekly basal insulin Fc achieved similar glycemic control with a safety profile comparable to insulin degludec in patients with type 1 diabetes. *Diabetes Care*. 2023;46(5):1052–9.
- 81. Bue-Valleskey JM, Kazda CM, Ma C, et al. Once-weekly basal insulin Fc demonstrated similar glycemic control to once-daily insulin degludec in insulin-naive patients with type 2 diabetes: a phase 2 randomized control trial. *Diabetes Care*. 2023;46(5):1060–7.
- 82. Qu Y, Luo J, Garhyan P, Antalis CJ, Chang AM, Jacober SJ. Dose unit establishment for a new basal insulin using joint modeling of insulin dose and glycemic response. *J Diabetes Sci Technol*. 2018;12(1):155–62.

- 83. Russell-Jones D, Pouwer F, Khunti K. Identification of barriers to insulin therapy and approaches to overcoming them. *Diabetes ObesMetab*. 2018;20(3):488–96.
- 84. Khunti K, Wolden ML, Thorsted BL, Andersen M, Davies MJ. Clinical inertia in people with type 2 diabetes: a retrospective cohort study of more than 80,000 people. *Diabetes Care*. 2013;36(11):3411–17.
- 85. Bergenstal RM, Philis-Tsimikas A, Wysham C, Carr MC, Bue-Valleskey JM, Botros FT, et al. Once-weekly insulin efsitora alfa: design and rationale for the QWINT phase 3 clinical development programme. *Diabetes ObesMetab*. 2024 Aug;26(8):3020–30.
- 86. Liu Q, Yang C, Qi J, Shen Q, Ye M, Li H, Zhang L. Bioactivities and structure-activity relationships of harmine and its derivatives: a review. *Chem Biodivers*. 2025 Mar 2;e202402953.
- 87. Saleh RA, Eissa TF, Abdallah DM, Saad MA, El-Abhar HS. Peganum harmala enhanced GLP-1 and restored insulin signaling to alleviate AlCl<sub>3</sub>-induced Alzheimer-like pathology model. *Sci Rep.* 2021 Jun 8;11(1):12040.
- 88. Yu L, Shen N, Ren J, Xin H, Cui Y. Resource distribution, pharmacological activity, toxicology and clinical drugs of β-carboline alkaloids: an updated and systematic review. *Fitoterapia*. 2025;180:106326.
- 89. Ghanbari A, Jalili C, Shahveisi K, Akhshi N. Harmine exhibits antiapoptotic properties and reduces diabetes-induced testicular damage caused by streptozotocin in rats. *Clin Exp Reprod Med.* 2024;51(4):324–33.
- 90. Jeong WS, Jun M, Kong AN. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. *Antioxid Redox Signal*. 2006;8(1–2):99–106.
- 91. Jiang Y, Bao H, Ge Y, et al. Therapeutic targeting of GSK3β enhances the Nrf2 antioxidant response and confers hepatic cytoprotection in hepatitis C. *Gut.* 2015;64(1):168–79.

- 92. Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. *Neural Regen Res.* 2012;7(5):376–85.
- 93. Jain S, Panuganti V, Jha S, Roy I. Harmine acts as an indirect inhibitor of intracellular protein aggregation. *ACS Omega*. 2020;5(11):5620–8. doi:10.1021/acsomega.9b02375.
- 94. Zheng Z, Zong Y, Ma Y, et al. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther. 2024;9:234.
- 95. Kumar K, Wang P, Sanchez R, Swartz EA, Stewart AF, DeVita RJ. Development of kinase-selective, harmine-based DYRK1A inhibitors that induce pancreatic human β-cell proliferation. *J Med Chem.* 2018 Sep 13;61(17):7687–99. doi:10.1021/acs.jmedchem.8b00658.
- 96. Yetisen AK, Khademhosseini A, Butt H. Wearables in medicine. *Adv Mater*. 2018 Jun 11;30(33):e1706910.
- 97. DCCT/EDIC Research Group; Nathan DM, Zinman B, Cleary PA, Backlund JY, Genuth S, Miller R, Orchard TJ; Pittsburgh Epidemiology of Diabetes Complications Experience (1983–2005). Modern-day clinical course of type 1 diabetes mellitus after 30 years' duration: the diabetes control and complications trial/epidemiology of diabetes interventions and complications. *Arch Intern Med.* 2009 Jul 27;169(14):1307–16.
- 98. Gao W, Emaminejad S, Nyein HYY, Challa S, Chen K, Peck A, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. *Nature*. 2016 Jan 28;529(7587):509–14.
- 99. Bai J, Liu D, Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors. *Sci Adv*. 2024 Apr 19;10(16):eadl1856.
- 100. Vettoretti M, Cappon G, Facchinetti A, Sparacino G. Advanced diabetes management using artificial intelligence and continuous glucose monitoring sensors. *Sensors* (*Basel*). 2020 Jul 10;20(14):3870.

- 101. Tierney MJ, Tamada JA, Potts RO, Jovanovic L, Garg S; Cygnus Research Team. Clinical evaluation of the GlucoWatch biographer: a continual, non-invasive glucose monitor for patients with diabetes. *BiosensBioelectron*. 2001 Dec;16(9-12):621–9.
- 102. Freckmann G, Link M, Pleus S, Westhoff A, Kamecke U, Haug C. Measurement performance of two continuous tissue glucose monitoring systems intended for replacement of blood glucose monitoring. *Diabetes Technol Ther.* 2018 Aug;20(8):541–9.
- 103. Schwartz G, Tee BC, Mei J, Appleton AL, Kim DH, Wang H, Bao Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. *Nat Commun.* 2013;4:1859.
- 104. Hanna J, Bteich M, Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy. *Sci Adv.* 2020 Jun 10;6(24):eaba5320.
- 105. Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group; Beck RW, Hirsch IB, Laffel L, Tamborlane WV. Bode BW, Buckingham B, et al. The continuous effect of glucose monitoring in well-controlled type 1 diabetes. Diabetes Care. 2009 Aug;32(8):1378-83.
- 106. Templer S. Closed-Loop Insulin Delivery Systems: Past, Present, and Future Directions. Front Endocrinol (Lausanne). 2022 Jun 6;13:919942.
- 107. Daly AB, Boughton CK, Nwokolo M, et al. Fully automated closed-loop insulin delivery in adults with type 2 diabetes: an open-label, single-center, randomized crossover trial. Nat Med. 2023;29:203–208.
- 108. Nimri R, Dassau E, Segall T, Muller I, Bratina N, Kordonouri O, et al. Adjusting insulin doses in patients with type 1 diabetes who use insulin pump and continuous glucose monitoring: Variations among countries and physicians. Diabetes ObesMetab. 2018 Oct;20(10):2458-2466.

- 109. Thomas A, Heinemann L. Algorithms for Automated Insulin Delivery: An Overview. J Diabetes Sci Technol. 2022 Sep;16(5):1228-1238.
- 110. Clarke WL. The original Clarke Error Grid Analysis (EGA). Diabetes Technol Ther. 2005 Oct;7(5):776-9
- 111. Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Trans Biomed Eng. 2007 May;54(5):931-937.
- 112. Turksoy K, Bayrak ES, Quinn L, Littlejohn E, Rollins D, Cinar A. Hypoglycemia early alarm systems based on multivariable models. Ind Eng Chem Res. 2013 Sep 4;52(35):12329–12336.
- 113. Rabby MF, Tu Y, Hossen MI, Lee I, Maida AS, Hei X. Stacked LSTM based deep recurrent neural network with Kalman smoothing for blood glucose prediction. BMC Med Inform Decis Mak. 2021 Mar 16;21(1):101.
- 114. Prendin F, Del Favero S, Vettoretti M, Sparacino G, Facchinetti A. Forecasting of glucose levels and hypoglycemic events: head-to-head comparison of linear and nonlinear data-driven algorithms based on continuous glucose monitoring data only. Sensors (Basel). 2021 Feb 27;21(5):1647.
- 115. Georga EI, Protopappas VC, Polyzos D, Fotiadis DI. Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models. Med Biol Eng Comput. 2015 Dec;53(12):1305-1318.
- 116. Georga EI, Protopappas VC, Ardigò D, Polyzos D, Fotiadis DI. A glucose model based on support vector regression for the prediction of hypoglycemic events under free-living conditions. Diabetes Technol Ther. 2013 Aug;15(8):634-643.
- 117. Marling C, Bunescu R. The OhioT1DM dataset for blood glucose level prediction: Update 2020. CEUR Workshop Proc. 2020 Sep;2675:71-74.
- 118. Man CD, Micheletto F, Lv D, Breton M, Kovatchev B, Cobelli C. The

- UVA/PADOVA type 1 diabetes simulator: new features. J Diabetes Sci Technol. 2014 Jan;8(1):26-34.
- 119. Zhao Q, Zhu J, Shen X, Lin C, Zhang Y, Liang Y, et al. Chinese diabetes datasets for data-driven machine learning. Sci Data. 2023 Jan 19;10(1):35.
- 120. Incremona GP, Messori M, Toffanin C, Cobelli C, Magni L. Model predictive control with integral action for artificial pancreas. Control Eng Pract. 2018;77:86-94.
- 121. Bothe MK, Dickens L, Reichel K, Tellmann A, Ellger B, Westphal M, et al. The use of reinforcement learning algorithms to meet the challenges of an artificial pancreas. Expert Rev Med Devices. 2013;10(5):661-73.
- 122. Emerson H, Guy M, McConville R. Offline reinforcement learning for safer blood glucose control in people with type 1 diabetes. J Biomed Inform. 2023; 142:104376.
- 123. Mauseth R, Hirsch IB, Bollyky J, Kircher R, Matheson D, Sanda S, et al. Use of a "fuzzy logic" controller in a closed-loop artificial pancreas. Diabetes Technol Ther. 2013;15(8):628-33.
- 124. Mauseth R, Wang Y, Dassau E, Kircher R Jr, Matheson D, Zisser H, et al. Proposed clinical application for tuning fuzzy logic controller of artificial pancreas utilizing a personalization factor. J Diabetes Sci Technol. 2010;4(4):913-22.
- 125. Boughton CK, Hovorka R. New closed-loop insulin systems. Diabetologia. 2021;64(5):1007-15.
- 126. Elleri D, Allen JM, Biagioni M, Kumareswaran K, Leelarathna L, Caldwell K, et al. Evaluation of a portable ambulatory prototype for automated overnight closed-loop insulin delivery in young people with type 1 diabetes. Pediatr Diabetes. 2012;13(6):449-53.
- 127. Bekiari E, Kitsios K, Thabit H, Tauschmann M, Athanasiadou E, Karagiannis T, et al. Artificial pancreas treatment for outpatients with type 1 diabetes: systematic review and meta-analysis. BMJ. 2018;361:k1310.

- 128. Bakhtiani PA, Zhao LM, El Youssef J, Castle JR, Ward WK. A review of artificial pancreas technologies with an emphasis on bi-hormonal therapy. Diabetes ObesMetab. 2013;15(12):1065-70.
- 129. Peters TM, Haidar A. Dual-hormone artificial pancreas: benefits and limitations compared with single-hormone systems. Diabet Med. 2018;35(4):450-9.
- 130. Blauw H, van Bon AC, Koops R, DeVries JH; PCDIAB consortium. Performance and safety of an integrated bihormonal artificial pancreas for fully automated glucose control at home. Diabetes ObesMetab. 2016;18(7):671-7.
- 131. Weisman A, Bai JW, Cardinez M, Kramer CK, Perkins BA. Effect of artificial pancreas systems on glycaemic control in patients with type 1 diabetes: a systematic review and meta-analysis of outpatient randomised controlled trials. Lancet Diabetes Endocrinol. 2017;5(7):501-12.
- 132. Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers (Basel). 2021;13(16):2815.
- 133. Basu A, Dube S, Slama M, Errazuriz I, Amezcua JC, Kudva YC, et al. Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes. 2013;62(12):4083-7.
- 134. Cameron BD, Baba JS, Coté GL. Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor. Diabetes Technol Ther. 2001;3(2):201-7.
- 135. Hina A, Saadeh W. Noninvasive blood glucose monitoring systems using near-infrared technology—a review. Sensors (Basel). 2022;22(13):4855.
- 136. Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, Veiseh O, et al. Injectable nano-network for glucosemediated insulin delivery. ACS Nano. 2013;7(5):4194-201.

- 137. Deng Y, Lu L, Aponte L, Angelidi AM, Novak V, Karniadakis GE, et al. Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients. NPJ Digit Med. 2021;4(1):109.
- 138. Zhu T, Kuang L, Daniels J, Herrero P, Li K, Georgiou P. IoMT-enabled real-time blood glucose prediction with deep learning and edge computing. IEEE Internet Things J. 2023;10(5):3706-19.
- 139. Li G, Xu G, Sangaiah AK, Wu J, Li J. EdgeLaaS: Edge learning as a service for knowledge-centric connected healthcare. IEEE Netw. 2019;33(6):37-43.
- 140. Limenh LW, Worku NK, Melese M, Esubalew D, Fenta ET, Hailu M, et al. Effectiveness, safety, and preference of transdermal insulin compared to subcutaneous insulin in the treatment of diabetes patients: a systematic review of clinical trials. DiabetolMetab Syndr. 2024;16(1):197.
- 141. Lin Y, Wu J, et al. A pH-responsive microneedle patch for the transdermal delivery of biomineralized insulin nanoparticles to diabetes treatment. Int J BiolMacromol. 2025;284(Pt 1):137955.
- 142. Zhang Y, Yu J, Kahkoska AR, Wang J, Buse JB, Gu Z. Advances in transdermal insulin delivery. Adv Drug Deliv Rev. 2019; 139:51-70.
- 143. Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res. 2020; 24:12.
- 144. Ramadon D, McCrudden MTC, Courtenay AJ, Donnelly RF. Enhancement strategies for transdermal drug delivery systems: current trends and applications. Drug Deliv Transl Res. 2022; 12(4):758-91.
- 145. Ali MK, Moshikur RM, Wakabayashi R, Moniruzzaman M, Goto M. Biocompatible ionic liquid-mediated micelles for enhanced transdermal delivery of paclitaxel. ACS Appl Mater Interfaces. 2021;13(17):19745-55.
- 146. American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes Care. 2021; 44(Suppl 1):S15-33.

- 147. Anderson BJ, Laffel LM, Domenger C, Danne T, Phillip M, Mazza C, et al. Factors associated with diabetes-specific health-related quality of life in youth with type 1 diabetes: the Global TEENs Study. Diabetes Care. 2017;40(8):1002-9.
- 148. Saydah SH. Medication use and selfcare practices in persons with diabetes. In: Cowie CC, Casagrande SS, Menke A, et al., editors. Diabetes in America. 3rd ed. Bethesda (MD): NIDDK (US); 2018. Chapter 39.
- 149. Kesavadev J, Saboo B, Krishna MB, Krishnan G. Evolution of insulin delivery devices: from syringes, pens, and pumps to DIY artificial pancreas. Diabetes Ther. 2020;11(6):1251-69
- 150. van den Boom L, Karges В, Rami-Merhar Auzanneau M, В. Lilienthal E, von Sengbusch S, et al. Temporal trends and contemporary use of insulin pump therapy and glucose monitoring among children, adolescents, and adults with type 1 diabetes between 1995 and 2017. Diabetes Care. 2019;42(11):2050-6.
- 151. Dhingra M, Priya G, Dhingra A, Kalra S. Subcutaneous insulin administration in infants and toddlers. J Pak Med Assoc. 2018;68(12):1840-2.
- 152. Klonoff DC, Nayberg I, Stauder U, Oualali H, Domenger C. Half-unit insulin pens: disease management in patients with diabetes who are sensitive to insulin. J Diabetes Sci Technol. 2017;11(3):623-30.
- 153. Jendle J, Ericsson Å, Gundgaard J, Møller JB, Valentine WJ, Hunt B. Smart insulin pens are associated with improved clinical outcomes at lower cost versus standard-of-care treatment of type 1 diabetes in Sweden: a cost-effectiveness analysis. Diabetes Ther. 2021;12(1):373-88.
- 154. Sarteau AC, Souris KJ, Wang J, Ramadan AA, Addala A, Bowlby D, et al. Changes to care delivery at nine international pediatric diabetes clinics in response to the COVID-19 global pandemic. Pediatr Diabetes. 2021;22(3):463-8.
- 155. Fleming GA, Petrie JR, Bergenstal RM, Holl RW, Peters AL, Heinemann L. Diabetes digital app technology:

- benefits, challenges, and recommendations. Diabetologia. 2020;63(2):229-41.
- 156. Kerr D, Warshaw H. Clouds and silver linings: COVID-19 pandemic is an opportune moment to democratize diabetes care through telehealth. J Diabetes Sci Technol. 2020;14(6):1107-10.
- 157. Adolfsson P, Hartvig NV, Kaas A, Møller JB, Hellman J. Increased time in range and fewer missed bolus injections after introduction of a smart connected insulin pen. Diabetes Technol Ther. 2020;22(10):709-18.
- 158. Gildon BW. InPen smart insulin pen system: product review and user experience. Diabetes Spectr. 2018;31(4):354-8
- 159. Baliga BS, Tillman JB, Olson B, Vaughan S, Sheikh FN, Malone JK. First real-world experience with Bigfoot Unity: a 6-month retrospective analysis. Clin Diabetes. 2023;41(4):539-48.
- 160. Sangave NA, Aungst TD, Patel DK. Smart connected insulin pens, caps, and attachments: a review of the future of diabetes technology. Diabetes Spectr. 2019;32(4):378-84.
- 161. Ilkowitz J, Wissing V, Gallagher MP. Pediatric smart insulin pen use: the next best thing. J Diabetes Sci Technol. 2022;16(3):635-40
- 162. DePrenger M, Shao Y, Lu F, Fleming N, Sikdar S. Feasibility study of a smart pen for autonomous detection of concentration lapses during reading. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:1864-7.
- 163. McCoy EK, Wright BM. A review of insulin pen devices. Postgrad Med. 2010;122(3):81-8.
- 164. Sangave NA, Aungst TD, Patel DK. Smart connected insulin pens, caps, and attachments: a review of the future of diabetes technology. Diabetes Spectr. 2019;32 (4):378-84.
- 165. Galindo RJ, Ramos C, Cardona S, Vellanki P, Davis GM, Oladejo O, et al. Efficacy of a smart insulin pen cap for the management of patients with uncontrolled type 2 diabetes: a randomized cross-over trial. J Diabetes Sci Technol. 2023;17(1):201-7.