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Diabetic Mellitus, a chronic metabolic disorder, continuous to pose significant 

Health challenges globally. The management of diabetes mellitus has entered a 

transformative era with the advent of novel pharmacological agents and advanced 

drug delivery systems that aim to optimize glycemic control, reduce complications, 

and improve patient adherence. This article aims to provide a comprehensive 

review of the latest clinical trials, FDA approvals and ongoing research drugs on 

diabetes management and novel approaches like Artificial Pancreas System. The 

potential impact of immunomodulatory therapies and Beta cell regeneration 

strategies, including the management of Diabetes in pediatrics with recent 

technologies are also explored. Among the most promising therapies is tirzepatide, 

a dual GIP/GLP-1 receptor agonist that demonstrates superior efficacy in reducing 

HbA1c and body weight compared to conventional agents. The advent of once-

weekly basal insulins such as insulin icodec and efsitora alfa signifies a paradigm 

shift in insulin therapy, reducing injection burden while maintaining stable 

glycemic profiles. Additionally, Lantidra, the first FDA-approved allogeneic 

pancreatic islet cell therapy, offers a functional cure for select patients with type 1 

diabetes, eliminating the need for exogenous insulin. The investigational compound 

harmine, known for its DYRK1A inhibitory properties, shows promise in 

stimulating human β-cell proliferation, potentially enabling endogenous insulin 

regeneration. Emerging therapies like Merilog and TIX-100, though in earlier 

stages, represent next-generation molecules targeting unique pathways for improved 

glycemic and metabolic outcomes. Together, these advances underscore a shift 

towards personalized, patient-centric diabetes management, with a focus on long-

term efficacy, safety, and quality of life improvements. 

INTRODUCTION 

Diabetes mellitus is a prevalent 

comorbidity associated with increased 

healthcare burden, reduced patient well-being, 

and elevated mortality rates [1]. Diabetes 

affected 10.5% of adults (536.6M) in 2021 and 

is projected to reach 12.2% (783.2M) by 2045, 

with higher rates in older adults, urban areas, 

and wealthier countries[2]. Diabetes persists as  

 

a significant concern in healthcare systems 

globally. Type 2 diabetes, the most common 

and often preventable form, is increasing 

globally due to rising obesity or driven by 

various factors. Early detection can reverse it 

in some cases, but prevention remains 

challenging. Understanding population-

specific risk and burden is vital for effective 
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control strategies[3]. Type 1 and type 2 

diabetes significantly impact both public health 

and economic stability in communities [4,5]. 

According to Ho Municipality, Ghana a 

hospital-based cross-sectional study was 

carried and reported that Engaging in moderate 

physical activity may improve both glycaemic 

control and blood pressure management [5]. 

While physical activity provides significant 

health benefits for people with diabetes, high 

rates of inactivity remain common in this 

population[6]. Countries with large adult 

populations also have the highest diabetes 

numbers, with China (98.4M) and India 

(65.1M) leading. Eight of the ten most 

populous nations are also among the top ten for 

adult diabetes cases. Diabetes prevalence rises 

with age in all regions and income groups, 

peaking at 18.6% in those aged 60–79. 

However, most cases (184 million) are in the 

40–59 age group, a trend expected to continue 

over the next 20 years[7].Rising diabetes rates 

globally are linked to modern lifestyles, 

sedentary habits, hereditary , dietary shifts,  

increasing Urbanisation , obesity, 

Socioeconomic Disparities and other various 

conditions [8-10]. Diabetes can lead to or 

enhance the risk of several other serious health 

conditions due to prolonged high blood sugar 

levels and metabolic imbalances which include 

Cardiovascular diseases’(like myocardial 

infarction, stroke and heart failure)[11],Kidney 

Disease (Diabetic Nephropathy is a leading 

cause of end-stage renal disease (ESRD) [12], 

Eye Disorders (Diabetic Retinopathy) 

[13],Nerve Damage (Diabetic Neuropathy) 

[14],Diabetic foot ulcers [15], Skin infections 

[16], Alzheimer’s Disease and Cognitive 

Decline [17],dental problems  (Periodontitis) 

[18], Depression and Mental Health Issues[19]. 

Type 2 diabetes accounts for over 95% of all 

diabetes cases globally. In 2017, it affected 

around 462 million people, representing 6.28% 

of the world's population. While less common, 

type 1 diabetes is increasing, particularly 

among children and adolescents. The number 

of individuals under 20 years living with type 1 

diabetes is estimated to be over 1.5 million 

globally. Projections indicate that the number 

of adults with diabetes will increase from 537 

million in 2021 to 783 million by 2045[20,21]. 

In recent years, advancements in diabetes 

management and treatment have ushered in a 

new era of therapeutic options, ranging from 

cutting-edge medications to innovative 

technologies. Among the most promising 

treatments,Tirzepatide[22],Merilog[30],Orforg

lipron[32], Lantidra[34], Ozempic[36], and 

TIX100[44] stand out as potent contenders in 

the fight against type 2 diabetes and 

weightloss. These therapies represent 

significant strides in the development of 

medications that target the underlying 

mechanisms of the disease. Meanwhile, long-

acting insulin formulations such as Insulin 

Icodec and Insulin Efsitora are redefining how 

insulin therapy can be delivered to enhance 

patient outcomes with less frequent 

dosing[49,55]. In addition to pharmaceutical 

advancements, the artificial pancreas system 

has emerged as a breakthrough in personalized 

diabetes care, offering automated glucose 

control for those with type 1 diabetes [96].On 

the horizon, natural and cell-based therapies, 

including the use of Harmine, are being 

explored for their potential to regenerate 

pancreatic cells and restore insulin 

production[86]. These novel approaches, 

combined with sophisticated technologies, are 

setting the stage for a future where diabetes 

management may become more effective, 

personalized, and less invasive. This article 

delves into the most recent innovations in 

diabetes therapy, providing an overview of 

their mechanisms, benefits, and future 

potential[97]. 

NOVEL THERAPIES FOR DIABETES 

MELLITUS: 

1. TIRZEPATIDE: Tirzepatide (Mounjaro), 

developed by Eli Lilly and approved by the 

FDA in May 2022, is the first dual GLP-1 

and GIP receptor agonist ("twincretin") 

that significantly lowers blood glucose, 

improves insulin sensitivity and lipid 

metabolism, and reduces body weight by 

over 20%. As a synthetic GIP analog with 

acylation for albumin binding, it enables 

once-weekly subcutaneous dosing, 

ushering in a new era of dual therapies for 

diabetes, obesity, and cardiometabolic 

diseases[22]. Tirzepatide demonstrated 

safety and efficacy for weight management 

in adults with T1D, leading to significant 

weight loss, reduced insulin doses, and 

improved glycemic control over 8 months. 

Additionally, three years of tirzepatide 

treatment in individuals with obesity and 

prediabetes sustained substantial weight 
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loss and significantly reduced progression 

to type 2 diabetes compared to placebo 

[23,24]. Further research is warranted to 

understand subgroup differences in 

glycemic responses and outcomes in older, 

frail populations. In the SURMOUNT-2 

trial, tirzepatide significantly improved 

physical and psychosocial HRQoL in 

participants with obesity and T2D, with 

greater benefits seen in those achieving 

more weight loss and those with baseline 

physical limitations [25,26]. Additional 

advantages: Tirzepatide improves 

hemodynamics, reduces blood pressure, 

circulatory volume expansion, systemic 

inflammation, myocardial injury and 

enhances renal and functional outcomes in 

obesity-related HFpEF, offering sustained 

and multifaceted clinical benefits [27-29]. 

2. MERILOG:The FDA approved Merilog 

(insulin-aspart-szjj) as the first rapid-acting 

insulin recently in february 2025 which is 

biosimilar to Novolog for improving 

glycemic control in adults and children 

with diabetes[30]. Available in prefilled 

pens and vials, Merilog is administered 

subcutaneously within 5–10 minutes before 

meals, with individualized dosing based on 

patient needs. It is designed to manage 

mealtime blood sugar that enhances 

glycemic control and is offered in both a 3 

mL single-patient-use pen and a 10 mL 

vial for multiple doses.[30] 

3. Orforglipron: Orforglipron, a non-peptide 

oral GLP-1 receptor agonist, shows 

promising efficacy in the treatment of type 

2 diabetes mellitus (T2DM). Meta-analysis 

results indicate that Orforglipron 

significantly reduces HbA1c and fasting 

plasma glucose (FPG) levels compared to 

placebo, although weight loss benefits are 

less consistent. Gastrointestinal side effects 

(nausea, vomiting, diarrhea) were 

common, particularly during dose 

escalation, though no clear dose-dependent 

pattern was observed in early-phase trials, 

likely due to small sample sizes. Unlike 

injectable or peptide-based therapies, 

Orforglipron offers improved 

bioavailability without fasting 

requirements, enhancing its clinical 

convenience. These findings suggest 

Orforglipron has strong potential as a 

future oral therapy for T2DM, though 

larger and longer studies are needed to 

confirm its long-term efficacy and 

safety[32].After 12 weeks, Orforglipron 

significantly reduced HbA1c, fasting 

glucose, and body weight, with a safety 

profile similar to other GLP-1RAs and 

convenient once-daily oral dosing without 

food or water restrictions, offering a 

promising treatment for T2D and other 

conditions [31].Orforglipron demonstrated 

a favorable safety profile across clinical 

trials, with mild to moderate 

gastrointestinal events as the most common 

adverse reactions. Pharmacokinetic studies 

reported a half-life between 29–67.5 hours, 

supporting once-daily dosing without food 

restrictions. In Phase Ia and Ib trials, 

Orforglipron led to significant weight loss 

(up to 5.8 kg) and HbA1c reductions (1.5–

1.8%) over 12 weeks in T2DM patients. 

Phase II trials showed even greater 

benefits, with HbA1c reductions of up to 

2.10% and weight losses of 9.4% to 14.7% 

in both diabetic and non-diabetic obese 

patients, positioning Orforglipron as a 

promising oral therapy for T2DM and 

obesity[33]. 

4. LANTIDRA: The FDA approved 

Lantidra, the first cellular therapy made 

from deceased donor pancreatic cells, for 

adults with type 1 diabetes who struggle to 

control HbA1c due to recurrent severe 

hypoglycemia. Administered via a single 

infusion into the hepatic portal vein, 

Lantidra enables donor beta cells to 

produce insulin, potentially eliminating the 

need for injections. In two nonrandomized 

studies of 30 patients, 21 stopped insulin 

use for at least one year, with 10 remaining 

insulin-free for over five years[34]. The 

future of islet transplantation, including 

Lantidra, holds both challenges and 

opportunities. While Lantidra is now 

covered by many U.S. private insurers and 

benefits from updated shipping protocols 

extending its shelf life to 48 hours, 

widespread adoption remains complex. In 

2024, the University of Illinois Health 

began offering Lantidra therapy, with plans 

for multicenter expansion by 2025[35]. 

Although the FDA recently approved 

Lantidra, major barriers still prevent islet 

transplantation from becoming standard 

care for all type 1 diabetes patients [36]. 
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Key challenges include donor islet scarcity, 

the need for systemic immunosuppression, 

high costs, and restrictive U.S. regulations 

that classify allogeneic islets as biologic 

drugs requiring costly BLA approval [37]. 

These regulatory constraints have led to a 

steep decline in islet transplantation 

procedures, 179 (1999–2005) to only 11 

(2016–2019), in contrast to other countries 

that treat islets as minimally manipulated 

tissue and offer them as standard clinical 

care [38,39]. Experts propose regulatory 

updates to improve access, affordability, 

and outcomes for patients with severe 

hypoglycemia [40]. 

5. OZEMPIC: A GLP-1 receptor agonist, 

semaglutide has demonstrated meaningful 

weight loss in patients with type 2 diabetes 

[41]. Among high-risk patients, 

semaglutide significantly reduced rates of 

cardiovascular death, nonfatal myocardial 

infarction, and nonfatal stroke relative to 

placebo, confirming its cardiovascular 

noninferiority[42]. Furthermore, in patients 

with chronic kidney disease, semaglutide 

lowered the risk of critical kidney 

outcomes and cardiovascular death[43]. 

6. TIX 100: TIX100, a novel oral TXNIP 

inhibitor, protects against high-fat diet–

induced glucose intolerance, 

hyperinsulinemia, hyperglucagonemia, and 

adiposity while preserving lean mass, 

without the liver and lipid abnormalities 

seen with some other agents. The observed 

enhancements in glucose homeostasis and 

reduction in glucagon levels mirrors the 

protective effects seen with genetic TXNIP 

deficiency and beta cell-specific TXNIP 

deletion in various diabetes models,[44] as 

well as decreased glucagon secretion 

following alpha cell TXNIP 

deletion,[45]and, unlike some glucagon 

receptor antagonists, enhances plasma 

cholesterol, triglycerides, and ALT levels 

without adverse liver effects[46]. TIX100, 

in high-fat diet (HFD) models, reduced 

weight gain and improved glucose 

metabolism (blood glucose, HbA1c, 

insulin, glucagon) without major weight 

loss. It enhanced leptin sensitivity, reduced 

food intake, and improved islet function 

while avoiding gastrointestinal side effects 

seen with GLP-1 agonists. Its metabolic 

effects were dependent on TXNIP, as they 

were lost in TXNIP-deficient mice. Unlike 

verapamil, TIX100 is safer, as it doesn’t 

affect calcium channels. TIX100 has the 

potential to serve as a novel oral therapy 

for managing both T1D and T2D.  

Preclinical studies show TIX100 is more 

potent than verapamil, metformin, and 

empagliflozin. Recently FDA-approved for 

clinical trials in T1D, TIX100 shows 

promise for diabetes treatment, focusing on 

islet preservation and glucose 

regulation[47]. 

7. ONCE WEEKLY INSULIN (Insulin 

icodec, insulin efsitora alfa): Insulin 

therapy has advanced over the past 

century, with once-weekly insulins like 

icodec and efsitora offering a significant 

breakthrough in basal insulin treatment 

[49]. Both create a circulating reservoir of 

insulin for sustained release, with icodec 

conjugated to HSA and efsitora using a 

novel insulin-IgG2 Fc fusion. These 

modifications reduce insulin's affinity for 

the insulin receptor (IR), slowing clearance 

and extending activity for weekly dosing 

[50].Icodec, with a half-life of 8 days, and 

efsitora, with a half-life of 17 days, provide 

similar efficacy to daily insulins with low 

hypoglycemia rates in T2D patients [51]. 

However, caution is needed for T1D 

patients until more data is available. 

Ongoing research, including CGM data, 

will provide more insights into their safety 

and effectiveness [52]. These insulins 

reduce injection burden, improve 

adherence, and may offer benefits such as 

fewer healthcare visits and more stable 

glucose control [53]. Additionally, the 

stable glucose profiles of weekly insulins 

could improve self-sufficiency in these 

patients, limit insulin titrations, and 

potentially reduce diabetic ketoacidosis 

(DKA) in non-compliant T1D patients, 

especially teenagers [54]. 

INSULIN ICODEC: Among 50 participants 

with T2D in a Phase 1 trial, icodec exhibited a 

median tmax of 16 hours and maintained a 

mean half-life of 8 days [55]. Participants 

received once-weekly icodec or daily IDeg, 

with glucose-lowering effects measured over 7 

days. The response pattern remained 

consistent, with a modest rise observed on day 

3 followed by a subtle decline on day 7 [56]. 

No serious adverse events or severe 
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hypoglycemia were reported. A second study 

showed that icodec's exposure and glucose-

lowering effects were consistent across 

different injection sites (thigh, abdomen, or 

upper arm)[57]. In Phase 2 studies on icodec in 

T2D patients explored dosing and titration 

strategies to inform phase 3 trials. In a 26-

week trial of insulin-naive patients, icodec 

showed similar HbA1c reductions to daily 

IGlar U100, but with higher rates of level 1 

hypoglycemia [58]. Another 16-week trial 

tested different titration approaches, finding 

the best balance of glycemic control and low 

hypoglycemia with a target glucose of 80-130 

mg/dL and a weekly dose change of ±21 units 

[59]. A study on switching from daily basal 

insulins to weekly icodec showed that a 

loading dose improved time in range (TIR) and 

minimized transient hyperglycemia [60]. 

Overall, icodec demonstrated comparable 

efficacy to IGlar U100, with low 

hypoglycemia rates [61]. The use of a loading 

dose was particularly effective for patients 

transitioning to icodec[62]. The ONWARDS 

phase 3 program for icodec consisted of six 

clinical trials, focusing on T2D and T1D 

patients [63]. ONWARDS 1 to 5 were treat-to-

target studies comparing icodec to once-daily 

insulins (IGlar U100, IDeg) and/or placebo, 

with ONWARDS 6 testing icodec in T1D 

patients [64]. Insulin doses were titrated to a 

prebreakfast glucose target of 80-130 mg/dL 

with specific adjustments for icodec and daily 

comparators [65]. The studies included insulin-

naive (ONWARDS 1, 3, 5) and insulin-treated 

(ONWARDS 2, 4) populations. Starting doses 

for icodec were based on weekly totals, with 

some studies using a loading dose [66]. All 

studies met their primary endpoints of 

noninferiority to comparators for HbA1c 

reduction, with ONWARDS 1, 2, 3, and 5 

showing statistically significant superiority in 

HbA1c reduction[67,68]. The ONWARDS 2 

and 4 studies assessed the efficacy and safety 

of icodec compared to once-daily basal 

insulins (IDeg and IGlar U100) in patients with 

T2D[63,64]. 

ONWARDS 2 (26 weeks) showed that icodec 

reduced HbA1c from 8.2% to 7.2%, compared 

to 7.4% with IDeg, confirming noninferiority 

and superiority of icodec. An increase in 

hypoglycemia was evident with icodec, yet 

TBR measurements showed no meaningful 

variation. A modest increase in body weight 

(+1.4 kg with icodec vs −0.3 kg with IDeg) 

was noted, and patients preferred icodec based 

on treatment satisfaction scores[64,66]. 

ONWARDS 4 (26 weeks) showed similar 

HbA1c reductions (8.3% to 7.1% for both 

icodec and IGlar U100). Both groups 

maintained equivalent TIR and TAR values, 

yet level 1 hypoglycemia rates were elevated 

in the icodec group (31.5 vs 24.9 events per 

patient-year) [65,67]. The total insulin dose 

was lower for icodec, especially in the basal 

component, though body weight increases 

were similar between groups [69]. Post-hoc 

analyses revealed no significant differences in 

TIR or hypoglycemia duration at steady 

state[72,73]. 

ONWARDS 6 was a 52-week study 

comparing icodec and IDeg in type 1 diabetes 

patients. Icodec showed noninferiority to IDeg 

in HbA1c reduction (−0.37% vs −0.54%) at 52 

weeks, but had significantly higher rates of 

combined level 2 or 3 hypoglycemia (19.93 vs 

10.37 events per PYE) and nocturnal 

hypoglycemia. TIR and TAR were similar 

between the groups, with neither meeting 

guideline targets [55,68]. Icodec required 

higher basal insulin doses but lower bolus 

doses, with similar total weekly insulin doses 

between treatments. Body  weight changes and 

overall treatment satisfaction favoured IDeg. 

The study suggests more research is needed, 

particularly using CGM-guided titration, to 

optimize icodec use in T1D and reduce 

hypoglycemia risk[70,71]. 

Clinical pharmacological studies: A study by 

Pieber et al. investigated hypoglycemia risk 

with icodec compared to IGlar U100 in 

patients with T2D, focusing on clinical, 

physiological, and counter regulatory 

responses to double and triple doses [74,75]. 

Both insulins caused similar rates of clinically 

significant hypoglycemia, but icodec showed 

faster recovery times, though the risk of 

recurrence remained due to its longer duration 

of action[76,77]. CGM data indicated low time 

spent in hypoglycemia after doses, even for 

those with significant hypoglycemia [78, 79]. 

Additional studies on renal and hepatic 

impairment indicated no major differences in 

icodec exposure, suggesting no dose 

adjustments are necessary for these 

populations [80,81]. Overall, practices for 

managing hypoglycemia with icodec are 

comparable to daily insulins [82], though 
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further research in high-risk groups is 

recommended[83,84]. 

INSULIN EFSITORA: In Phase 1 studies, 

efsitora demonstrated glucose-lowering effects 

within 3 days of administration, with sustained 

fasting plasma glucose (FPG) reduction for at 

least 5 days. The pharmacokinetic (PK) profile 

showed peak concentration (tmax) at 4 days 

post-dose and a half-life of approximately 17 

days[77].Hypoglycemic events with efsitora 

were similar to those seen with IGlar U100. In 

the multiple ascending dose (MAD) study, a 

loading dose strategy (3x weekly dose) 

accelerated time to steady-state concentration, 

and efsitora concentrations remained flat 

across all doses, showing a 14% increase in PK 

levels over a week[55]. 

In Phase 2 studies, efsitora was compared to 

insulin degludec (IDeg) and showed 

noninferiority in HbA1c reduction [78]. In 

T2D patients on basal insulin, efsitora had 

fewer hypoglycemic events and a lower weight 

gain (1.0 kg vs. 2.0 kg with IDeg) [79]. In 

insulin-naive T2D patients, efsitora also 

showed noninferiority in HbA1c reduction and 

had similar hypoglycemia rates compared to 

IDeg, with better time-in-range (TIR) and 

lower time-below-range (TBR) [80]. In T1D 

patients, efsitora was noninferior to IDeg in 

HbA1c reduction, with similar TIR and 

hypoglycemia rates. However, efsitora patients 

showed smaller weight gain (0.1 kg vs. 0.6 kg 

with IDeg) [81]. An initial period of 

hyperglycemia was observed in T1D patients 

due to potential underdosing, indicating the 

need for better dosing adjustments [82]. The 

ongoing Phase 3 QWINT trials are further 

investigating efsitora's efficacy, safety, and 

tolerability in T2D and T1D patients, 

comparing it with standard daily insulin 

regimens[85]. 

NATURAL AND CELL THERAPIES: 

HARMINE: Harmine, a tricyclic β-carboline 

alkaloid from Peganum harmala L., has 

attracted attention for its broad biological 

activities. Recent research (2019–2024) 

highlights the enhanced therapeutic potential 

of harmine derivatives. A comprehensive 

review of studies from major scientific 

databases explored their biological effects, 

structure–activity relationships, and emerging 

applications, including those involving 

nanotechnology. Notably, the biological 

activities of harmine contained antidiabetic 

properties [86]. Peganum harmala, through its 

key alkaloids harmine and harmaline, shows 

strong potential in regulating glucose 

homeostasis and enhancing insulin sensitivity 

[87]. Unlike synthetic GLP-1 receptor agonists 

like semaglutide, P. harmala stimulates the 

endogenous secretion of GLP-1 by activating 

glucose-sensing pathways in enteroendocrine 

L-cells, primarily through Akt/GLUT4 

signaling. This leads to increased GLUT4 

translocation, glucose uptake, and GLP-1 

exocytosis [88, 89]. 

Additionally, P. harmala activates the Nrf2 

antioxidant pathway, reducing oxidative 

stress in L-cells and sustaining GLP-1 

production. It also improves insulin sensitivity 

by enhancing PI3K/Akt signaling and 

reducing insulin resistance markers like 

pS307-IRS-1. Furthermore, inhibition of GSK-

3β by harmine and harmaline enhances Nrf2 

activity, reinforcing antioxidant 

defenses[90,91]. Thus, P. harmala acts as a 

dual therapeutic agent, improving insulin 

action and combating oxidative stress — both 

critical in diabetes and related 

neurodegenerative conditions [92]. 

Furthermore, structural modifications and the 

application of nanocarriers make harmine and 

its derivatives more druggable [86]. However, 

low bioavailability of harmine and harmaline 

remains a challenge to its clinical application 

[93,94]. 

BETA CELL REGENERATION VIA 

HARMINE: Harmine promotes β-cell 

proliferation via the DYRK1A-NFAT pathway 

but lacks selectivity. To improve this, 29 

harmine analogs were synthesized, leading to 

the identification of 2-2c, a novel DYRK1A 

inhibitor with enhanced selectivity, reduced 

CNS off-target effects, and superior β-cell 

regeneration efficacy at lower doses, making it 

a promising candidate for diabetes 

treatment[95]. 

ARTIFICIAL PANCREAS SYSTEM: 

Insulin therapy, essential for diabetes care, is 

evolving with wearable technologies like 

continuous glucose monitors (CGMs) and 

closed-loop insulin delivery systems [96]. 

Recent advances integrate artificial intelligence 

to enhance glucose control, aiming to create 

artificial pancreas systems [97]. While 

promising, challenges remain regarding device 

accuracy, algorithm safety, and data privacy 

[98]. Wearable devices and AI-driven systems 
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are paving the way for more natural and 

responsive diabetes management, potentially 

transforming the treatment landscape for type 1 

diabetes [99,100]. 

Wearable devices are transforming type 1 

diabetes (T1D) management by enabling 

precise, real-time monitoring and insulin 

delivery without disrupting daily life [101]. 

Continuous glucose monitors (CGMs) track 

glucose levels dynamically, improving lifestyle 

management and reducing the need for 

frequent blood tests [102]. Advances include 

both electrochemical sensors and new 

noninvasive technologies like optical and 

electromagnetic methods [103,104]. In 

parallel, continuous subcutaneous insulin 

infusion (CSII) systems, such as smart insulin 

pens and pumps, offer more accurate and user-

friendly insulin delivery, improving glycemic 

control, reducing hypoglycemia, and 

enhancing patient quality of life[105,106]. 

Wearable technologies have advanced CGM 

systems and insulin delivery, enabling the 

creation of closed-loop artificial pancreas (AP) 

systems that automate insulin dosing based on 

real-time glucose data[107]. These systems 

improve diabetes management and quality of 

life but still face risks like hypoglycemia and 

hyperglycemia. Accurate and adaptable 

prediction models are vital to address 

individual glucose variability [108]. Glucose 

prediction models use CGM data to forecast 

blood sugar trends and serve as early warning 

systems, but they must account for lifestyle 

and environmental factors[109,110]. Tools like 

Clarke Error Grid Analysis help evaluate 

prediction accuracy, though each method has 

specific strengths and limitations depending on 

the clinical goals [111]. Advances in glucose 

prediction have evolved from traditional 

mathematical models to data-driven machine 

learning (ML) and deep learning approaches 

[112]. Early models like AR, ARX, and 

ARMAX improved short-term forecasting 

accuracy but struggled with complex, 

nonlinear glucose dynamics [113]. Machine 

learning methods, including support vector 

regression (SVR) and random forests (RF), 

enhanced predictions by analyzing factors such 

as meals, insulin, and physical activity, 

achieving high accuracy (up to 94% for 

nocturnal hypoglycemia) [114,115]. Deep 

neural networks (DNNs), particularly recurrent 

structures like LSTMs and GRUs, further 

boosted performance by capturing temporal 

patterns, with LSTMs achieving lower 

prediction errors (~12.38 mg/dL RMSE) 

[116,117]. Recently, Transformer models, 

using multihead self-attention, have surpassed 

traditional RNNs in handling long sequences 

and uncertainty, delivering highly accurate 

multi-step glucose forecasts and opening new 

possibilities for closed-loop diabetes 

management [118,119]. 

Diabetes Management: Datasets for 

Research and Algorithm Development: 
Effective use of machine learning and AI in 

diabetes management requires high-quality 

datasets for model development. This section 

introduces four key datasets descripted in table 

1[117-121]. While these datasets support the 

development of glucose prediction and control 

models, challenges remain due to variations in 

data quality, monitoring durations, and 

sampling rates. Future efforts aim to collect 

more diverse and comprehensive physiological 

data to improve model accuracy and 

reliability[122]. 

Automated Insulin Delivery Algorithms: 

Automated insulin delivery (AID) systems aim 

to ease the burden of insulin therapy in T1D by 

using wearable devices and smart algorithms to 

automatically monitor glucose and adjust 

insulin doses. Key approaches include: Fuzzy 

Logic (FL), Model Predictive Control 

(MPC), Reinforcement Learning (RL) 

presented in table 2 [123-129]. 

Advancing Diabetes Control: Challenges, 

Innovations, and Future Outlook: Despite 

advancements in closed-loop diabetes control, 

several challenges must be overcome. Some of 

them are as follows: 

Bridging the Gap: Artificial vs. Natural 

Pancreas Dynamics: Current artificial 

pancreas (AP) systems rely mainly on glucose 

monitoring and insulin delivery, missing the 

complex hormone interactions of a natural 

pancreas [130,131]. Future systems may use 

multisensing wearable devices and dual-

hormone delivery (insulin + glucagon) for 

better glucose regulation, with technologies 

like micro needles and organic electrochemical 

transistors improving monitoring 

accuracy[132,133]. 
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Redefining Glucose Monitoring: 

Noninvasive Solutions: Next-generation 

CGMs aim to be painless and user-friendly 

through noninvasive methods (e.g., optical, 

electromagnetic), but still face challenges like 

physiological lag and interference factors 

[134,135]. Combining multimodal sensing and 

machine learning could boost prediction 

accuracy and device reliability [136]. 

Improving Model Training with Reliable 

Data: Prediction models often suffer from 

generalization issues due to patient variability 

and imbalanced datasets [134]. Future work 

must focus on more diverse, comprehensive 

data collection and apply techniques like 

transfer learning and advanced pre-processing 

to improve model robustness [137,138]. 

Edge-Intelligent Systems for Real-Time 

Diabetes Management: Deep learning models 

need to run efficiently on edge devices (e.g., 

smart watches, CGMs) for real-time, offline 

glucose management. Techniques like model 

compression, quantization, and pruning are 

crucial [134]. The ultimate goal is an AI-

driven, wearable "cyborg pancreas" for 

personalized and responsive diabetes 

management. Edge computing also enhances 

data privacy by minimizing data transmission 

risks [137]. 

FutureVision: The goal is to develop 

intelligent, AI-powered wearable artificial 

pancreas systems that integrate multisensing 

[132], dual-hormone therapy, and personalized 

glucose management [134], significantly 

improving diabetes care and quality of 

life[139]. 

TRANSDERMAL INSULIN: Recent 

advancements in Needle-free transdermal jet 

technology have opened new avenues for 

insulin administration, offering a non-invasive 

alternative to conventional subcutaneous 

injections[140]. Various types of transdermal 

(TD) insulin delivery systems exist, but the 

ones that have progressed to clinical trials 

include TD patches, microneedle-based 

delivery systems, and TD insulin jet injectors. 

A total of 18 clinical studies have evaluated 

these methods. 

 

 

Figure 1:Empowering Diabetes Patients 

Through Connected Care i.e. This image 

illustrates how integrated technology 

simplifies glucose tracking and insulin 

delivery for improved daily management. 

 

Table 1:Overview of Key Diabetes Datasets: A comparative summary of real-world and 

simulated datasets used in diabetes research, highlighting participant profiles, types of data 

collected, and unique features for each dataset. 

Dataset Participants Data Collected Special Features 

OhioT1DM 12 T1D patients CGM, insulin dosing, 

physiological sensors, life events 

Visualization tool; 

extended from 6 to 12 

subjects 

UVA/Padova 

T1DMS 

Simulated 

(virtual patients) 

Simulated glucose, insulin, 

meals, hyper/hypoglycemia 

events 

Realistic simulation; 

updated S2013 version 

D1NAMO 20 healthy + 9 

diabetic 

CGM, insulin, 34 physiological 

metrics (e.g., ECG, temperature) 

Most comprehensive; 

limited CGM duration 

Shanghai 

T1DM/T2DM 

12 T1D + 100 

T2D patients 

CGM, clinical profiles, labs, 

medications, dietary records 

Real-world data from 

diverse patients 
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Table 2: Comparison of Automated Insulin Dosing Algorithms: Summary of key features, 

advantages, and limitations of Fuzzy Logic, Model Predictive Control, and Reinforcement 

Learning approaches in diabetes management systems. 

 

  High Adaptability 

      | 

      |                          RL 

      | 

      |             MPC 

      | 

|  FL 

      | 

      |________________________________________ 

          Low Complexity          High Complexity 

    FL → Low complexity,  but low adaptability (good for simple cases). 

 MPC → Moderate complexity,  moderate-to-high adaptability (good for dynamic adjustments). 

 RL → High complexity, very high adaptability (best for personalization but requires more data and 

training)[123-129]. 

 

Figure 2: Results of comparable clinical studies on Transdermal insulin and traditional methods. 

Method Key Features Strengths Limitations 

Fuzzy Logic (FL) Rule-based using 

expert-defined glucose 

ranges 

Handles uncertainty; 

simple implementation 

Poor personalization; 

limited in complex cases 

Model Predictive 

Control (MPC) 

Predicts future glucose 

trends and adjusts 

insulin proactively 

Dynamic dosing 

optimization; responsive 

to real-time changes 

Requires accurate 

models; computationally 

heavier 

Reinforcement 

Learning (RL) 

Learns optimal dosing 

policies over time 

from experience 

Highly adaptive and 

personalized; handles 

complexity 

Needs a lot of training 

data; longer 

development 
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Table 3: Comparison of Artificial Pancreas Systems and Transdermal Insulin Pumps: An 

analytical overview of two advanced insulin delivery methods based on delivery routes, control 

mechanisms, integration, precision, and clinical suitability. 

Feature Artificial Pancreas System (APS) Transdermal Insulin Pump 

Insulin Delivery 

Route 

Subcutaneous (via cannula/tubing) Transdermal (via skin using 

microneedles, iontophoresis, etc.) 

Control Type Automated (closed-loop with CGM & 

algorithm) 

Semi-automated or manual 

Speed of Insulin 

Action 

Fast (subcutaneous absorption) Slower and variable 

Precision & Dose 

Control 

High – responds every 5–10 minutes 

using algorithms 

Moderate – limited to sustained 

release patterns 

Integration with 

CGM 

Yes – tightly integrated for closed-loop 

feedback 

Rarely – typically standalone 

systems 

Device 

Components 

CGM sensor, insulin pump, control 

algorithm (smartphone or dedicated) 

Patch, insulin reservoir, transdermal 

delivery system 

User Involvement Minimal (mostly automatic) Moderate – often needs setting or 

replacing patches 

Best for Type 1 diabetes patients needing tight 

glycemic control 

Type 2 or early-stage Type 1 

diabetes, needle-phobic patients 

Commercial 

Availability 

Widely available (e.g., Medtronic 

MiniMed 780G, Tandem Control-IQ) 

In development or limited release 

(e.g., microneedle patches) 

Challenges Cost, complexity, frequent calibration Slower response, limited control 

over sudden glucose changes 

The findings indicate that TD insulin delivery 

is either more effective or at least comparable 

to traditional subcutaneous (SC) insulin 

administration in terms of efficacy, safety, and 

patient preference.visual summary of findings 

from 18 clinical studies comparing 

Transdermal (TD) insulin delivery with 

Subcutaneous (SC) insulin delivery is 

presented below in the figure 2[140]. As an 

innovative form of transdermal drug 

administration, microneedle (MN) patches 

offer distinct advantages such as accuracy, 

reduced pain, and better regulation, positioning 

them as a compelling alternative to traditional 

routes [141]. Each microneedle (MN) array 

consists of multiple tiny needle-like 

projections anchored on a base substrate, 

which carry therapeutic agents and penetrate 

the outermost skin layer to create painless 

microchannels for drug delivery 

[142,143].Upon contact with interstitial fluid, 

the microneedle tips swell or dissolve, 

enabling autonomous drug release and 

providing sustained delivery to the epidermis 

or upper dermis over an extended 

period[144,145].The comparison of Artificial 

pancreas system and transdermal insulin 

system is described in the below table 

3[96,97,98,99,141,144,145]. 

Diabetes management in pediatrics: 

An estimated 7.4 million individuals in the 

United States with diabetes rely on insulin 

therapy. Of these, about 1.6 million (5–10%) 

have type 1 diabetes (T1DM), including 

approximately 200,000 individuals under 20 

years of age and over 1 million adults[146]. 

All individuals with T1DM require insulin 

therapy, with most using multiple daily 

injections (MDI)[147]. By estimation, around 

5.8 million Americans with type 2 diabetes 

(T2DM) are also treated with insulin [148]. 

Tracking Insulin Pens (Stages 1-3): 
Tracking insulin pens use wireless 

communication and sensors to offer 

increasingly sophisticated tracking features, 

addressing many of the challenges associated 

with insulin management [153]. For instance, 

Novo Nordisk’s NovoPen Echo Plus (Stage 1) 

provides accurate retrospective dose data. 

There are also attachments, such as Clipsulin 

by Diabnext and Gocap by Common Sensing, 

that interface with apps to track doses, though 

Gocap is not yet commercially available. 

These devices are subject to regulatory review 
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processes, including 510(k) exemption, 

clearance, or approval [154,155]. 

Smart Insulin Pens (Stages 4-5): 

Smart insulin pens mark a significant leap 

forward in the evolution of insulin delivery 

systems. By syncing with smartphones, these 

pens provide intelligent features that optimize 

insulin management [156]. The Companion 

Medical InPen System, FDA-cleared in 2017, 

is the first smart insulin pen in the U.S. Smart 

pens aim to address many challenges 

associated with insulin management, offering 

advanced features like weight-based therapy 

settings and dynamic dose titration. Though 

there are currently no smart insulin pens in 

Stage 5, the future of these devices looks 

promising with expectations of global growth 

[157]. Smart Insulin Pens (SIPs) offer two key 

features from Continuous Subcutaneous 

Insulin Infusion (CSII): personalized insulin 

dosing and data tracking for effective diabetes 

management [157]. Smart Insulin Pens (SIPs) 

play a significant role in enhancing therapy 

goals like safety, data-driven management, and 

improving the quality of life (QoL) for 

individuals on multiple daily injections (MDI). 

The InPen (Companion Medical, 2017), the 

first FDA-approved SIP in the U.S., connects 

via Bluetooth to a smartphone app, providing 

personalized insulin dose calculations and 

automatic data tracking. While the pen 

continues to function after the battery dies, it 

loses its smart features without the app[158]. 

On the other hand, the Bigfoot Unity (Bigfoot 

BioMedical, 2021) is a smart pen cap that 

integrates continuous glucose monitoring 

(CGM) data with healthcare provider 

instructions, offering insulin dose 

recommendations and adjustments based on 

both insulin and CGM data[159].These 

technologies aim to streamline insulin 

management, making it more personalized and 

efficient for users[158,159]. While there is 

some literature on SIP use, especially in adults, 

there is limited research, particularly regarding 

pediatric use [160]. 

SIP Data-Driven Diabetes Management and 

Benefits in Pediatrics: 

Data-Driven Diabetes Management: The rise 

of telemedicine has highlighted the importance 

of data-driven diabetes management, with SIPs 

enabling remote data review and pattern 

management [161]. SIPs improve patient 

satisfaction, quality of life (QoL), and time-in-

range, showing positive outcomes in adults, 

such as fewer missed boluses and improved 

clinical results at lower costs [162,163]. 

While data-driven benefits are established in 

adults, pediatric-specific results are still limited 

[164]. SIP technology can ease the burden on 

caregivers by providing automatic data 

tracking and reporting [165]. 

Benefits of SIP in Pediatrics: Ease of Use: 

SIPs, like InPen, are easier to set up compared 

to CSII (insulin pumps), requiring less 

education and offering step-by-step guidance. 

This makes them an accessible option for 

families[156]. Reducing Stress: SIPs can help 

reduce anxiety for both children and parents, 

especially at diagnosis, by simplifying insulin 

management and reducing the risk of mistakes 

like insulin stacking [157]. Convenience for 

Caregivers: SIPs allow for better tracking and 

reporting of data to healthcare providers, 

making it easier for caregivers to manage 

diabetes remotely [158]. Flexibility for Breaks: 

SIPs allow patients who typically use CSII to 

take breaks, such as during social events, while 

still having bolus calculators and pre-

programmed settings [159]. 

Pediatric-Specific Benefits: SIPs can be 

customized with appealing designs and 

features for children, like insulin temperature 

tracking and alarms, helping ensure better 

adherence [158,159]. Additionally, using 

smartphone apps and widgets, parents can 

monitor real-time data, improving decision-

making [160,161]. Challenges in Pediatrics 

include Adherence Issues, Design Issues, 

Limited Remote Monitoring, Cost and 

Accessibility [161]. 

Discussion: Diabetes management is evolving 

rapidly, fuelled by groundbreaking 

developments in pharmacological therapies, 

biotechnological innovations, and digital 

health tools. Traditional therapies, while 

effective in glycemic control, often fail to 

address the multifactorial nature of diabetes, 

such as weight gain, hypoglycemia risk, and 

long-term β-cell preservation. Technological 

advancements are reshaping insulin therapy. 

The introduction of tirzepatide, a dual GIP 

and GLP-1 receptor agonist, has been a game-

changer, offering improved glycemic control 

along with substantial weight reduction—a 

dual benefit especially relevant in type 2 

diabetes patients with obesity. Orforglipron, 

an oral GLP-1 receptor agonist, represents a 

significant step forward in patient adherence, 

removing the need for injectable 
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administration. Meanwhile, Lantidra, an 

allogeneic pancreatic islet cell therapy, opens a 

potential pathway toward insulin independence 

in selected patients with type 1 diabetes. 

Although still limited by the need for 

immunosuppression, its success paves the way 

for future stem-cell or gene-based 

interventions. Innovations in insulin therapy 

are equally revolutionary. By minimizing 

injection burden, once-weekly insulin icodec 

streamlines diabetes management and 

promotes greater adherence. Additionally, the 

development of smart insulin pens, CGM 

devices, and the artificial pancreas integrate 

therapeutics with real-time glucose monitoring 

and automated decision-making—creating a 

closed-loop system that mimics physiological 

insulin release. Despite these advancements, 

challenges persist. High costs, limited 

accessibility in low-resource settings, 

regulatory hurdles, and the need for long-term 

safety data remain critical barriers to 

widespread adoption. Moreover, the 

integration of digital health tools requires 

robust patient education and infrastructure. 

CONCLUSION: The current era marks a 

transition from conventional, one-size-fits-all 

approaches to more refined, targeted, and 

patient-friendly treatment strategies in diabetes 

care. Novel pharmacological agents and digital 

tools are not only improving metabolic 

outcomes but also enhancing patient 

satisfaction and quality of life. These novel 

interventions are more than incremental 

advancements—they are paradigm shifts that 

bring us closer to personalized, patient-centric 

diabetes care. However, realizing their full 

potential demands a coordinated approach 

involving clinicians, researchers, policy-

makers, and patient communities. 

Future Vision: 

Looking ahead, the future of 

diabetology is set to be revolutionized by 

multifaceted advancements in science and 

technology. Personalized medicine will play a 

key role, with pharmacogenomics enabling 

tailored drug selection and dosing based on 

individual genetic and metabolic profiles. 

Breakthroughs in gene and cell-based 

therapies, including stem cell-derived solutions 

and gene editing tools like CRISPR-Cas9, hold 

the promise of curing diabetes at its root rather 

than merely managing it. The evolution of 

next-generation oral biologics will make it 

possible to deliver peptides and proteins, such 

as insulin and GLP-1 receptor agonists, 

without injections, thereby improving patient 

adherence and quality of life. In parallel, 

wearable and implantable biosensors will offer 

real-time, non-invasive monitoring of glucose 

levels and drug delivery, enhancing disease 

control. Furthermore, artificial intelligence 

(AI) and machine learning will be increasingly 

integrated into diabetes care to enable 

predictive analytics and real-time decision 

support, reducing complications and 

optimizing therapeutic outcomes. Central to 

this vision is the commitment to global equity 

in access, supported by low-cost 

manufacturing, policy-driven distribution 

strategies, and infrastructure development to 

ensure that cutting-edge therapies reach all 

populations. Collectively, these innovations 

signal a future where diabetes management 

becomes more proactive, personalized, and 

potentially curative. 
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